Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 746-757, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145139

RESUMO

Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g. below 200 eV to 600 eV) on samples with weakly scattering signals can be challenging. Here, results of soft X-ray spectro-ptychography at energies as low as 180 eV are presented, and its capabilities are illustrated with results from permalloy nanorods (Fe 2p), carbon nanotubes (C 1s) and boron nitride bamboo nanostructures (B 1s, N 1s). The optimization of low-energy X-ray spectro-ptychography is described and important challenges associated with measurement approaches, reconstruction algorithms and their effects on the reconstructed images are discussed. A method for evaluating the increase in radiation dose when using overlapping sampling is presented.


Assuntos
Nanotubos de Carbono , Raios X , Nanotubos de Carbono/química , Radiografia , Compostos de Boro
2.
Ultramicroscopy ; 184(Pt A): 46-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843906

RESUMO

Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required.

3.
Nat Nanotechnol ; 12(9): 871-876, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674459

RESUMO

Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

4.
Nano Lett ; 17(6): 3675-3680, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28505461

RESUMO

As an emerging single elemental layered material with a low symmetry in-plane crystal lattice, black phosphorus (BP) has attracted significant research interest owing to its unique electronic and optoelectronic properties, including its widely tunable bandgap, polarization-dependent photoresponse and highly anisotropic in-plane charge transport. Despite extensive study of the steady-state charge transport in BP, there has not been direct characterization and visualization of the hot carriers dynamics in BP immediately after photoexcitation, which is crucial to understanding the performance of BP-based optoelectronic devices. Here we use the newly developed scanning ultrafast electron microscopy (SUEM) to directly visualize the motion of photoexcited hot carriers on the surface of BP in both space and time. We observe highly anisotropic in-plane diffusion of hot holes with a 15 times higher diffusivity along the armchair (x-) direction than that along the zigzag (y-) direction. Our results provide direct evidence of anisotropic hot carrier transport in BP and demonstrate the capability of SUEM to resolve ultrafast hot carrier dynamics in layered two-dimensional materials.

5.
Nat Commun ; 8: 15177, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492283

RESUMO

The ultrafast spatial and temporal dynamics of excited carriers are important to understanding the response of materials to laser pulses. Here we use scanning ultrafast electron microscopy to image the dynamics of electrons and holes in silicon after excitation with a short laser pulse. We find that the carriers exhibit a diffusive dynamics at times shorter than 200 ps, with a transient diffusivity up to 1,000 times higher than the room temperature value, D0≈30 cm2s-1. The diffusivity then decreases rapidly, reaching a value of D0 roughly 500 ps after the excitation pulse. We attribute the transient super-diffusive behaviour to the rapid expansion of the excited carrier gas, which equilibrates with the environment in 100-150 ps. Numerical solution of the diffusion equation, as well as ab initio calculations, support our interpretation. Our findings provide new insight into the ultrafast spatial dynamics of excited carriers in materials.

6.
Langmuir ; 33(19): 4666-4674, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28438018

RESUMO

Hollow silica particles (HSPs) have become the focus of interest in many laboratories recently, because of their versatility, stemming from the ability to control their size and shape, as well as surface functionalization. Determining the mechanical stability of hollow particles is essential for their use, both in applications in which they need to retain their structure, as well as those in which they need to break down. We have synthesized a series of HSPs (inner diameter of 231 nm) with increasing wall thickness (7-25 nm), using a template approach. Their mechanical stability was measured using mercury intrusion porosimetry (MIP), which represents the novel application of the technique for these materials. The samples with complete shells break at progressively higher pressures, and samples with wall thickness ≥21 nm remain stable to the highest pressure applied (414 MPa). Other characterization methods, namely microscopy, gas adsorption, and small-angle X-ray scattering, shed light on the size parameters of the particles, as well as the porosity of the silica walls. By varying the amount of silica precursor used in the template coating step, we were able to produce hollow silicas with variable stability, thereby allowing for control of their mechanical properties.

7.
Science ; 347(6218): 164-7, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25574020

RESUMO

The dynamics of charge transfer at interfaces are fundamental to the understanding of many processes, including light conversion to chemical energy. Here, we report imaging of charge carrier excitation, transport, and recombination in a silicon p-n junction, where the interface is well defined on the nanoscale. The recorded images elucidate the spatiotemporal behavior of carrier density after optical excitation. We show that carrier separation in the p-n junction extends far beyond the depletion layer, contrary to the expected results from the widely accepted drift-diffusion model, and that localization of carrier density across the junction takes place for up to tens of nanoseconds, depending on the laser fluence. The observations reveal a ballistic-type motion, and we provide a model that accounts for the spatiotemporal density localization across the junction.

8.
ACS Nano ; 6(12): 10965-72, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23176188

RESUMO

The C 1s inner shell excitation spectra of individual metallic and semiconducting single-walled carbon nanotubes (SWCNTs) were measured using high-resolution electron energy loss spectroscopy in an aberration-corrected transmission electron microscope (TEM-EELS). On the basis of its diameter, the metallic SWCNT is most likely a (10,10) sample, whereas (11,12) and a number of other chiral vectors are consistent with the diameter of the semiconducting SWCNTs. The C 1s X-ray absorption spectra of the same electronically pure SWCNT materials were measured as individual bundles or agglomerations of bundles by scanning transmission X-ray microscopy. Spectral differences in the C 1s → π* transitions of metallic and semiconducting species, related to differences in the van Hove singularities in their unoccupied states, are observed by both methods. The fine structure of the C 1s → π* transitions is similar to that recently reported from nonspatially resolved X-ray absorption spectroscopy of ensemble samples of high-purity metallic and semiconducting SWCNTs. The quality of the TEM-EELS spectra of individual SWCNTs is such that the line shape can be used to identify if they are metallic or semiconducting, thereby opening up the possibility to interrogate the electronic state of single-SWCNT devices. A strong X-ray linear dichroism in the C 1s → π* band of both types of SWCNTs was observed.


Assuntos
Metais/química , Nanotubos de Carbono/química , Semicondutores , Elétrons , Análise Espectral
9.
ACS Nano ; 4(8): 4431-6, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20608685

RESUMO

The presence of defects in carbon nanotubes strongly modifies their electrical, mechanical, and chemical properties. It was long thought undesirable, but recent experiments have shown that introduction of structural defects using ion or electron irradiation can lead to novel nanodevices. We demonstrate a method for detecting and quantifying point defect density in individual carbon nanotubes (CNTs) based on measuring the polarization dependence (linear dichroism) of the C 1s --> pi* transition at specific locations along individual CNTs with a scanning transmission X-ray microscope (STXM). We show that STXM can be used to probe defect density in individual CNTs with high spatial resolution. The quantitative relationship between ion dose, nanotube diameter, and defect density was explored by purposely irradiating selected sections of nanotubes with kiloelectronvolt (keV) Ga(+) ions. Our results establish polarization-dependent X-ray microscopy as a new and very powerful characterization technique for carbon nanotubes and other anisotropic nanostructures.


Assuntos
Microscopia/métodos , Nanotubos de Carbono/química , Modelos Moleculares , Conformação Molecular , Raios X
10.
J Am Chem Soc ; 132(26): 9020-9, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20550128

RESUMO

The C 1s X-ray absorption spectra of several isolated bundles of single-walled carbon nanotubes (SWCNT) have been measured using scanning transmission X-ray microscopy. First the C 1s and O 1s spectra of a purified but unfunctionalized SWCNT were measured. The C 1s --> pi* transition at 285 eV exhibited almost as strong a dichroic effect (spectral dependence on orientation) as that found in multiwalled carbon nanotubes (Najafi; et al. Small 2008, 7, 2279-2285). Second, purified SWCNT were functionalized with dodecyl and then investigated by STXM. Spectral evidence for the dodecyl functionalization is presented and discussed in comparison to the X-ray absorption spectra of aliphatic hydrocarbons. Both orientation and functionalization mapping of an individual SWCNT bundle is demonstrated.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Nanotubos de Carbono/química , Oxigênio/química , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
11.
Small ; 4(12): 2279-85, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18989861

RESUMO

The polarization dependence (linear dichroism) of the C 1s X-ray absorption spectrum of individual multi-walled carbon nanotubes (MWCNTs) is measured using scanning transmission X-ray microscopy. A very strong dichroic effect is found in the C 1s --> pi* transition, with almost complete disappearance of this transition when the electric-field (E)-vector is aligned parallel to high-quality (low-defect) MWCNTs and maximum intensity when the E-vector is orthogonal to the tube axis. In contrast, there is very little dichroism in the C 1s --> sigma* transitions. The origin of this polarization effect is explained. The magnitude of the polarization dependence is found to differ in MWCNTs synthesized by different methods (arc discharge versus chemical vapor deposition). This is ascribed to differences in densities of sp(2)-type defects. The potential for use of this signal to characterize defects in single-carbon-nanotube devices is discussed.


Assuntos
Nanotubos de Carbono/química , Absorciometria de Fóton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...