Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16968, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043806

RESUMO

Biopolymers such as chitosan and pectin are currently attracting significant attention because of their unique properties, which are valuable in the food industry and pharmaceutical applications. These properties include non-toxicity, compatibility with biological systems, natural decomposition ability, and structural adaptability. The objective of this study was to assess the performance of two different ratios of pectin-chitosan polyelectrolyte composite (PCPC) after applying them as a coating to commercially pure titanium (CpTi) substrates using electrospraying. The PCPC was studied in ratios of 1:2 and 1:3, while the control group consisted of CpTi substrates without any coating. The pull-off adhesion strength, cytotoxicity, and antibacterial susceptibility tests were utilized to evaluate the PCPC coatings. In order to determine whether the composite coating was the result of physical blending or chemical bonding, the topographic surface parameters were studied using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). PCPC (1:3) had the highest average cell viability of 93.42, 89.88, and 86.85% after 24, 48, and 72 h, respectively, as determined by the cytotoxicity assay, when compared to the other groups. According to the Kirby-Bauer disk diffusion method for testing antibacterial susceptibility, PCPC (1:3) showed the highest average diameter of the zone of inhibition, measuring 14.88, 14.43, and 11.03 mm after 24, 48, and 72 h of incubation, respectively. This difference was highly significant compared to Group 3 at all three time periods. PCPC (1:3) exhibited a significantly higher mean pull-off adhesion strength (521.6 psi) compared to PCPC (1:2), which revealed 419.5 psi. PCPC (1:3) coated substrates exhibited better surface roughness parameters compared to other groups based on the findings of the AFM. The FTIR measurement indicated that both PCPC groups exhibited a purely physical blending in the composite coating. Based on the extent of these successful in vitro experiments, PCPC (1:3) demonstrates its potential as an effective coating layer. Therefore, the findings of this study pave the way for using newly developed PCPC after electrospraying coating on CpTi for dental implants.


Assuntos
Antibacterianos , Quitosana , Implantes Dentários , Pectinas , Polieletrólitos , Quitosana/química , Quitosana/farmacologia , Pectinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Polieletrólitos/química , Testes de Sensibilidade Microbiana , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Titânio/química , Titânio/farmacologia , Teste de Materiais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Propriedades de Superfície , Camundongos
2.
Int J Biol Macromol ; 273(Pt 2): 132986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866286

RESUMO

As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.


Assuntos
Antioxidantes , Polissacarídeos Fúngicos , Humanos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Biopolímeros/química , Animais , Fungos
3.
Sci Rep ; 13(1): 22203, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097618

RESUMO

Pectin and chitosan are natural polysaccharides obtained from fruit peels and exoskeletons of crustaceans and insects. They are safe for usage in food products and are renewable and biocompatible. They have further applications as wound dressings, body fat reduction, tissue engineering, and auxiliary agents in drug delivery systems. The healing process is usually long and painful. Adding a new material such as a pectin-chitosan composite to the implant surface or body would create unique biological responses to accelerate healing and delivery of target-specific medication at the implant site. The present study utilized the electrospraying process to create pectin-chitosan polyelectrolyte composite (PCPC) coatings with various ratios of 1:1, 2:1, 1:2, 1:3, and 3:1 on commercially pure titanium substrates. By means of FESEM, AFM, wettability, cross-cut adhesion, and microhardness were assessed the PCPC coatings' physical and mechanical properties. Subsequently, the antibacterial properties of the coating composite were assessed. AFM analysis revealed higher surface roughness for group 5 and homogenous coating for group 1. Group 3 showed the lowest water contact angle of 66.7° and all PCPC coatings had significantly higher Vickers hardness values compared to the control uncoated CpTi samples. Groups 3 and 4 showed the best adhesion of the PCPC to the titanium substrates. Groups 3, 4, and 5 showed antibacterial properties with a high zone of inhibitions compared to the control. The PCPC coating's characteristics can be significantly impacted by using certain pectin-chitosan ratios. Groups 3 (1:2) and 4 (1:3) showed remarkable morphological and mechanical properties with better surface roughness, greater surface strength, improved hydrophilicity, improved adhesion to the substrate surface, and additionally demonstrated significant antibacterial properties. According to the accomplished in vitro study outcomes, these particular PCPC ratios can be considered as an efficient coating for titanium dental implants.


Assuntos
Quitosana , Implantes Dentários , Quitosana/química , Propriedades de Superfície , Polieletrólitos , Titânio/química , Pectinas , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA