Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133347, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150766

RESUMO

Due to the widespread appearance of viruses, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) in the aquatic environment, more powerful oxidation processes such as ozonation are needed to enhance the efficiency of their inactivation and removal during wastewater treatment. However, information is lacking on the elimination rates of viruses, ARBs, cell-associated ARGs (ca-ARGs), and cell-free ARGs (cf-ARGs) during ozonation. This study examined the kinetics and dose-dependent inactivation of a virus (MS2 coliphage) and an ARB (Ampicillin-resistant [AmpR] E. coli) and the removal of ca- and cf-ARGs (plasmid-encoded blaTEM) by ozonation in a filtered secondary effluent (SE) of a municipal sewage treatment plant (STP). In addition, the ozonation kinetics of carbamazepine (CBZ) and metoprolol (MTP)-ubiquitous organic micropollutants with different removal rate constants-were also investigated in order to monitor their effectiveness as indicators for the abovementioned biological risk factors. Our results showed that ozonation was an efficient way to remove MS2, AmpRE. coli, ARGs, CBZ, and MTP. We investigated the kinetics of their inactivation/removal with respect to exposure in terms of CT (dissolved ozone concentration C and contact time T) value, and found their inactivation/removal constants were in the following order: MS2 (8.66 ×103 M-1s-1) ≈ AmpRE. coli (8.19 ×103 M-1s-1) > cf-ARG (3.95 ×103 M-1s-1) > CBZ (3.21 ×103 M-1s-1) > ca-ARG (2.48×103 M-1s-1) > MTP (8.35 ×102 M-1s-1). In terms of specific ozone dose, > 5-log inactivation of MS2 was observed at > 0.30 mg O3/mg DOC, while > 5-log inactivation of AmpRE. coli was confirmed at 1.61-2.35 mg O3/mg DOC. Moreover, there was almost no removal of ca-ARG when the specific ozone dose was < 0.68 mg O3/mg DOC. However, 2.86-3.42-log removal of ca-ARG was observed at 1.27-1.31 mg O3/mg DOC, while 1.14-1.36-log removal of cf-ARG was confirmed at 3.60-4.30 mg O3/mg DOC. As alternative indicators, > 4-log removal of CBZ was observed at > 1.00 mg O3/mg DOC, while > 2-log removal of MTP was confirmed at > 2.00 mg O3/mg DOC. Thus, it was observed that inactivation of E. coli needs a greater ozone dose to achieve the same level of inactivation of AmpRE. coli; for ARGs, cf-ARG can persist longer than ca-ARG if low dosages of ozone are applied in the filtrated SE, CBZ might act as an indicator with which to monitor the inactivation of viruses and ARBs, while MTP might act as an indicator with which to monitor removal of ARGs. Moreover, cf-ARG cannot be neglected even after ozonation due to the possibility that ca-ARGs can become cf-ARGs during ozonation and be discharged with the final effluent, posing a potential risk to the receiving environment.


Assuntos
Ozônio , Vírus , Purificação da Água , Antagonistas de Receptores de Angiotensina , Esgotos , Escherichia coli , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Purificação da Água/métodos , Antibacterianos
2.
J Hazard Mater ; 424(Pt C): 127552, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736194

RESUMO

N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) and their specific precursors (N,N-dimethylformamide [DMF] for NDMA and morpholine [MOR] for NMOR) were widely identified in runoff of urban area around the southern Lake Biwa basin, Japan. It was thought that this runoff might constitute a non-point source of the four compounds in rivers and sewage treatment plants (STPs) during heavy rainfall events. We investigated the spatiotemporal patterns of NDMA, NMOR, DMF and MOR in runoff and rivers in rainy days. NDMA and NMOR were detected in concentrations of up to 295 ng/L, while DMF and MOR were detected in concentrations of up to 33.7 µg/L. Continuous sequential sampling over periods of 24 or 48 h at the largest STP in the study area revealed that the four compounds in the primary effluent (PE) each had higher mass fluxes during heavy rainfall events than on dry days. This phenomenon might be contributed to non-point sources (e.g., runoff) from infiltration/inflow related to rainwater into sanitary sewers. Moreover, the four compounds were confirmed to have higher mass fluxes in the final effluent of the STP during periods of PE bypass (1.3-1.7 times for NDMA, NMOR, and MOR; over 200 times for DMF; on average) than that on dry days because of increasing inflow during heavy rain than during periods without PE bypass in dry weather.


Assuntos
Poluentes Ambientais , Nitrosaminas , Poluentes Químicos da Água , Dimetilnitrosamina , Rios , Água , Poluentes Químicos da Água/análise
3.
Environ Monit Assess ; 193(12): 847, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34839394

RESUMO

Pharmaceutical and personal care products (PPCPs) recently defined as emerging pollutants that widespread in surface water all around the world. This study investigated the distribution, and ecological risk of PPCPs in urban rivers of Hanoi, Vietnam, and Metro Manila, the Philippines. Of the 56 investigated PPCPs, 48 and 33 compounds were detected in the river water in Hanoi and in Metro Manila, respectively. The individual PPCP concentrations ranged from a few ng L-1 to thousands of ng L-1. The total concentration of PPCPs detected in water samples ranged from 7.5 to 20,789 ng L-1 in Hanoi and 118 to 3,394 ng L-1 in Manila. The predominant antibiotics was sulfamethoxazole detected in 27/28 samples with a maximum concentration up to 2,778 ng L-1 in Hanoi and presented in all samples with a maximum concentration up to 261 ng L-1 in Metro Manila. In Hanoi, the level of PPCPs in urban canals of Kim Nguu and To Lich Rivers was as high as that detected in domestic wastewater. The PPCP concentrations in tributaries and mainstream were lower than those found in urban canals. In rivers of both sites, PPCPs tended to increase along the stream. The concentration ratio of the labile marker caffeine to recalcitrant marker carbamazepine indicated that untreated domestic wastewater is the significant source of PPCPs in river water in Hanoi and Metro Manila. The ecological risk estimated by the risk quotient of the obtained maximum residue of PPCPs in investigated river water predicted a high risk of PPCPs to the aquatic organism in both Hanoi and Manila.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes Químicos da Água , China , Cosméticos/análise , Monitoramento Ambiental , Filipinas , Rios , Poluentes Químicos da Água/análise
4.
Chemosphere ; 267: 129200, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33385849

RESUMO

N-nitrosodimethylamine (NDMA), a probable carcinogenic disinfection by-product, can be formed with high molar yields following chloramination of ranitidine (RNTD), a histamine H2-receptor antagonist. Although RNTD and some of its transformation products (TPs) have been studied under chlorination and photo-irradiation, the relationship between RNTD TPs and NDMA formation potential (NDMA-FP) remaining after those processes is still unclear. This study investigated the effects of chlorination and/or photo-irradiation on NDMA-FP derived from RNTD, simulating an urban water environment receiving treated wastewater. After chlorination and/or photo-irradiation of RNTD, ten TPs including five new ones were identified by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTof-MS). In addition, important RNTD TPs responsible for NDMA-FP (e.g., chlorinated and hydroxylated RNTD: TP-364) were also confirmed by the relationship between detected peak area and NDMA-FP. The results showed that NDMA-FP remained due to the presence of RNTD TPs, although RNTD itself was significantly removed by chlorination and/or photo-irradiation. TP-364 was only formed by chlorination of RNTD and could not be removed by photo-irradiation. TP-314 (a stereoisomer of RNTD), -299, and -286, which were mainly formed by photo-irradiation of RNTD but not by photo-irradiation after chlorination, had strong positive correlations with NDMA-FP (R2 > 0.90; F-test, P < 0.01).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Halogenação , Ranitidina , Águas Residuárias , Poluentes Químicos da Água/análise
5.
Water Res ; 191: 116827, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476799

RESUMO

The contribution of specific precursors to N-nitrosodimethylamine formation potential (NDMA FP) upon chloramination depends not only on their NDMA molar yields but also on their concentrations in the actual environment. We investigated the seasonal and diurnal patterns of the NDMA precursor N,N-dimethylformamide (DMF) and NDMA FP in the Yodo River basin, Japan, by examining water samples taken from inside the basin's largest sewage treatment plant (STP) as well as samples from five final effluents from four STPs, two main stream sites, and two tributary sites in the same basin. DMF and NDMA FP were found to be high in influent (raw sewage), and were found to be mostly removed during the STP treatment processes (especially with biological treatment). Nevertheless, DMF was found in concentrations of 0.06 to 31.7 µg/L in chlorinated effluents and in receiving rivers, while NDMA FP was detected in concentrations of 3.57 to 306 ng/L. Thus, STPs were shown to be an important source of DMF and NDMA FP to rivers. A strong positive correlation between NDMA FP and DMF was confirmed in the receiving river (K-M), indicating that DMF was an important NDMA precursor in the Yodo River basin. The contribution of DMF to NDMA FP was 15.8±11.2% (n = 4) in summer and 82.1±10.2% (n = 4) in winter in the main stream (site K-M) of the river due to insufficient dilution of chlorinated effluents from the largest STP. From the viewpoint of NDMA and NDMA FP control at downstream sites, monitoring and control of DMF at upstream sites are important.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Dimetilformamida , Dimetilnitrosamina , Japão , Esgotos , Poluentes Químicos da Água/análise
6.
Infect Drug Resist ; 14: 5563-5574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34984011

RESUMO

BACKGROUND: Excrement containing antimicrobial-resistant bacteria (ARB) is discharged from the hospital sewage through wastewater treatment plants (WWTP) into rivers, increasing the antimicrobial resistance (AMR) burden on the environment. PURPOSE: We illustrate the contamination of hospital sewage tanks with ARB harboring antimicrobial resistance genes (ARGs) using comprehensive metagenomic sequencing. During the study period, we moved to a new hospital building constructed for renovation. Therefore, we investigated the difference in bacterial flora in the sewage tanks for each building with different departments, and the change in bacterial flora over time in new sewage tanks. Furthermore, we performed a comparative genome analysis of extended spectrum ß-lactamase (ESBL)-producing organisms (EPOs) from hospital sewage and clinical samples. Residual antibiotics in the sewage tank were also measured. METHODS: Metagenomic analysis was performed on the hospital sewage samples, followed by whole genome sequencing of EPOs. RESULTS: The bacterial composition of new sewage tanks was comparable with that of old tanks within 1 month after relocation and was instantly affected by excrement. The bacterial composition of sewage tanks in the old and new buildings, containing rooms where seriously ill patients were treated, was similar. Selection on CHROMagar ESBL allowed detection of EPOs harboring bla CTX-M and carbapenemase genes in all sewage tanks. One of the sewage Escherichia coli strain comprising ST393 harboring bla CTX-M-27 corresponded to the clinical isolates based on core genome analysis. Moreover, the levels of levofloxacin and clarithromycin in the hospital sewage were 0.0325 and 0.0135 µg/mL, respectively. CONCLUSION: Hospital sewage was contaminated with many ARB species, ARGs and residual antibiotics, which can cause a burden on WWTP sewage treatment. The bacterial flora in the sewage tank was rapidly affected, especially by the ward with seriously ill patients. AMR monitoring of hospital sewage may help detect carriers prior to nosocomial ARB-associated outbreaks and control the outbreaks.

7.
Environ Sci Pollut Res Int ; 28(10): 12082-12091, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32451902

RESUMO

This study evaluated the occurrence of PPCPs in Cau River (Vietnam). Surface water and sediment samples were collected to determine PPCP concentrations. The analysis results showed the presence of 36 out of 56 investigated PPCPs in samples. The total concentration of PPCPs in water samples ranged from 8.21 to 529 ng/L and the value observed in sediment was from 17.4 to 172.8 µg/kg. Along the Cau River, there was a trend of accumulation of PPCPs at the downstream. The highest level of PPCP was observed after the river flows through Thai Nguyen and Bac Ninh provinces. Among detected PPCPs, the ones detected with high frequency (over 70%) and high concentration were caffeine, sulfamethoxazole, and lincomycin in water and triclocarban, levofloxacin, and griseofulvin in sediment. The water-sediment partition coefficient (Kd) was estimated to explore the fate of PPCP in the river, and the observed Kd mean values for lincomycin, sulfamethoxazole, and griseofulvin were 223.0, 7.6, and 997.0 kg/L, respectively. Risk assessment was initially conducted by applying a semi-quantitative assessment risk quotient (RQ); the potential ecological risk to the aquatic organism of PPCPs posed a moderate risk.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes Químicos da Água , China , Cosméticos/análise , Monitoramento Ambiental , Vietnã , Poluentes Químicos da Água/análise
8.
Environ Sci Pollut Res Int ; 28(9): 10889-10897, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33105007

RESUMO

Disinfection by-products (DBPs) discharged from sewage treatment plants (STPs) could harm downstream receiving waters and drinking water resources. In-stream attenuation of photo- and non-photodegradable DBPs during river transportation is currently not well understood. Here we sought to fill this knowledge gap by meta-data-analysis for modeling in-stream attenuation of DBPs. Data were collected along a treated-wastewater-dominated 1.6-km stretch of a river channel for 3 years and incorporated seasonal and diurnal patterns. Photo-irradiation and water temperature were the main factors responsible for in-stream attenuation of photodegradable N-nitrosodimethylamine (NDMA), and water temperature for that of non-photodegradable formaldehyde (FAH). The factors were incorporated into photo-dependent and -independent models to account for temporal variations in NDMA and FAH, respectively. Estimated mass recoveries of NDMA and FAH agreed well with observed values along the stretch. The models developed here offer a novel and useful tool for estimating levels of NDMA and FAH during river transportation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Formaldeído , Rios , Estações do Ano , Poluentes Químicos da Água/análise
9.
Science ; 367(6476): 384-387, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31974243

RESUMO

Knowledge of the hazards and associated risks from chemicals discharged to the environment has grown considerably over the past 40 years. This improving awareness stems from advances in our ability to measure chemicals at low environmental concentrations, recognition of a range of effects on organisms, and a worldwide growth in expertise. Environmental scientists and companies have learned from the experiences of the past; in theory, the next generation of chemicals will cause less acute toxicity and be less environmentally persistent and bioaccumulative. However, researchers still struggle to establish whether the nonlethal effects associated with some modern chemicals and substances will have serious consequences for wildlife. Obtaining the resources to address issues associated with chemicals in the environment remains a challenge.


Assuntos
Meio Ambiente , Poluentes Ambientais , Substâncias Perigosas , Resíduos Industriais , Purificação da Água
10.
Environ Sci Technol ; 54(3): 1720-1729, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935073

RESUMO

Pharmaceuticals raise concerns for aquatic species owing to their biological activities. It is estimated that nearly 40% of marketed pharmaceuticals target G protein-coupled receptors (GPCRs). Using an in vitro transforming growth factor-α (TGFα) shedding assay, we previously detected antagonistic activities of GPCR-acting pharmaceuticals against angiotensin (AT1), dopamine (D2), acetylcholine (M1), adrenergic family members (ß1), and histamine (H1) receptors at up to µg-antagonist-equivalent quantities/L in wastewater in England and Japan. However, which pharmaceuticals were responsible for biological activities in wastewater remained unclear. Here, we used (1) the consumption of GPCR-acting pharmaceuticals, particularly antagonists, as calculated from prescriptions, (2) their urinary excretion, and (3) their potency measured by the TGFα shedding assay to prioritize them for analysis in wastewater in England and Japan. We calculated predicted activities of 48 GPCR-acting pharmaceuticals in influents in England and Japan and identified which were mainly responsible for antagonistic activities in wastewater against each GPCR. Mixtures of pharmaceuticals tested in this study were confirmed to behave additively. The combination of consumption and potency is useful in prioritizing pharmaceuticals for environmental monitoring and toxicity testing.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Inglaterra , Monitoramento Ambiental , Japão , Águas Residuárias
11.
J Hazard Mater ; 383: 121155, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31639613

RESUMO

N-nitrosodimethylamine (NDMA) and formaldehyde (FAH) are probable carcinogenic disinfection by-products and have been found to occur in areas of the Yodo River basin that are influenced by treated wastewater. The diurnal patterns of them were examined with water samples collected over 4 years in different seasons at five outlets of four sewage treatment plants (STPs), seven main stream sites, and five tributary sites in the basin. Based on mass flux calculations, STPs were shown to be the main sources of the downstream for NDMA and FAH loads in the study area. Moreover, results revealed that photo degradable NDMA and non-photo degradable FAH showed different fates during the river transportation. For NDMA, in addition to direct photolysis, water temperature was identified as an important factor in NDMA attenuation in surface waters. NDMA attenuated significantly in the daytime and even during summer nights but persisted during winter nights, while attenuation of FAH was found to mainly be influenced by water temperature, and persisted during winter. Their behaviors were compared in an artificial river channel and whole study area, clearly demonstrating the importance of monitoring them in the water environment during periods of low UV intensity and water temperature, especially winter nights.

12.
J Environ Manage ; 251: 109555, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539697

RESUMO

To determine the most efficient pretreatment for ceramic membrane filtration (CMF) of primary clarifier effluent (PE), the effectiveness of ozonation and coagulation was investigated from the viewpoint of both virus removal and mitigation of membrane fouling. Our results showed virus removal by coagulation to be more efficient as a CMF pretreatment, whereas ozonation showed better efficiency when used as a CMF posttreatment. The effect of ozonation and coagulation on ceramic membrane fouling was investigated during short-term operation. With the use of coagulation before CMF (PACl + CMF), irreversible fouling resistance was 0.5 × 1011 m-1 at a dosage of 150 mg/L of polyaluminum chloride (PACl), which was 10 times lower than when ozonation was used as a pretreatment to CMF (O3+CMF) (0.7 × 1012 m-1 at 50 mg-O3/L). This result indicates coagulation to be more efficient than ozonation for mitigating ceramic membrane fouling. Based on these results, the process sustainability of PACl + CMF was then investigated during longer-term operation. At a dosage of 150 mg/L of PACl, the PACl + CMF process could be sustainably operated for 120 h without any need for chemically enhanced backwashing, which was twice as long as for PACl dosages of 50 and 100 mg/L. Coagulation is thus a more efficient pretreatment for CMF of PE from the viewpoint of both virus removal and mitigation of ceramic membrane fouling. The hygienic safety of reclaimed water can be further improved if ozonation is used as a CMF posttreatment.


Assuntos
Ozônio , Purificação da Água , Cerâmica , Membranas Artificiais , Águas Residuárias
13.
Water Res ; 163: 114868, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344505

RESUMO

The seasonal and diurnal patterns of N-nitrosomorpholine (NMOR) and its formation potential (NMOR FP) were examined with water samples taken from five outlets of four sewage treatment plants (STPs), seven main stream sites, and five tributary sites in the Yodo River basin. STPs were shown to be the main sources of downstream NMOR load. The highest NMOR levels were found in the discharge from one STP (26.4-171 ng/L). Continuous sequential samplings over a period of 24 h at this STP revealed that NMOR flux at the influent point fluctuated in both summer (0.4-3.2 g/h) and winter (0.3-5.4 g/h), while it was steady in the effluent. In addition, levels of NMOR remained stable during the biological treatment and disinfection processes. The present research demonstrated that NMOR could be formed from morpholine (MOR) in raw sewage treated by this STP, with a possible mechanism being formaldehyde-catalyzed nitrosation of MOR by nitrites, prior to raw sewage entering the STP. This implies that the NMOR detected here might not be a disinfection byproduct per se under low-chlorine disinfection (around 1.0 mg/L), but is primarily a contaminant that is difficult to remove during sewage treatment. NMOR attenuated significantly in the rivers in the daytime with production of MOR, but persisted during nights, which demonstrated the importance of monitoring NMOR levels in the water environment during periods of low UV intensity, especially nights.


Assuntos
Nitrosaminas , Poluentes Químicos da Água , Desinfecção , Monitoramento Ambiental , Rios , Esgotos
14.
Chemosphere ; 220: 20-27, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30579170

RESUMO

We investigated the effects of the inclusion of biological activated carbon (BAC) on membrane fouling in combined process of ozonation, coagulation and ceramic membrane filtration (O3 + PACl + CMF) for treating secondary effluent. Inclusion of BAC between ozonation and coagulation reduced membrane permeability. The normalized flux decreased to 90% of the initial value after 305 h of operation in O3 + PACl + CMF, while it decreased to 20% in combined process of ozonation, BAC, coagulation and ceramic membrane filtration. BAC not only decreased residual ozone that is helpful to mitigate ceramic membrane fouling, but also released microorganisms. In addition, BAC doubled the integrated fluorescence intensity of soluble microbial products (SMP), which cause irreversible fouling. The SMP produced and accumulated by microorganisms on the BAC bed likely flowed into the BAC effluent with the microorganisms. The proportion of SMP in the extracted foulant increased from 25% without BAC to 31% with BAC. Moreover, the inclusion of BAC nearly doubled the concentration of protein in the extracted foulant to 13 g/m2 and quadrupled that of carbohydrate to 6 g/m2. BAC was effective in improving the quality of ceramic membrane permeates and reducing health risk associated with formaldehyde and N-nitrosodimethylamine. However, the release of SMP from BAC accelerated membrane fouling in subsequent ceramic membrane filtration.


Assuntos
Carvão Vegetal/farmacologia , Filtração/métodos , Membranas Artificiais , Purificação da Água/métodos , Cerâmica , Ozônio/química , Poluentes Químicos da Água/isolamento & purificação
15.
Environ Sci Technol ; 52(20): 11848-11856, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30216714

RESUMO

While pharmaceuticals are now routinely detected in aquatic environments, we know little of the biological activity their presence might provoke. It is estimated that nearly 40% of all marketed pharmaceuticals are G protein-coupled receptors (GPCRs) acting pharmaceuticals. Here, we applied an in-vitro assay, called the TGFα shedding assay, to measure the biological activities of GPCRs-acting pharmaceuticals present in effluents from municipal wastewater treatment plants in the United Kingdom (UK) and Japan from 2014 to 2016. The results indicated that compounds were present in the wastewater with antagonistic activities against angiotensin (AT1), dopamine (D2), adrenergic (ß1), acetylcholine (M1), and histamine (H1) receptors in both countries. The most consistent and powerful antagonistic activity was against the H1, D2, and AT1 receptors at up to microgram-antagonist-equivalent quantity/L. Chemical analysis of the same UK samples was also conducted in parallel. Comparing the results of the bioassay with the chemical analysis indicated (1) the existence of other D2 or M1 receptor antagonists besides sulpiride (D2 antagonist) or pirenzepine (M1 antagonist) in wastewater and (2) that there might be a mixture effect between agonist and antagonistic activities against ß1 receptor. GPCR-acting pharmaceuticals should be paid more attention in the environmental monitoring and toxicity testing in future studies.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Monitoramento Ambiental , Japão , Reino Unido , Águas Residuárias
16.
Artigo em Inglês | MEDLINE | ID: mdl-30205535

RESUMO

This study investigated the removal characteristics of N-Nitrosamines and their precursors at three pilot-scale water reclamation plants. These plants applies different integrated membrane systems: (1) microfiltration (MF)/nanofiltration (NF)/reverse osmosis (RO) membrane; (2) sand filtration/three-stage RO; and (3) ultrafiltration (UF)/NF and UF/RO. Variable removal of N-Nitrosodimethylamine (NDMA) by the RO processes could be attributed to membrane fouling and the feed water temperature. The effect of membrane fouling on N-Nitrosamine removal was extensively evaluated at one of the plants by conducting one month of operation and chemical cleaning of the RO element. Membrane fouling enhanced N-Nitrosamine removal by the pilot-scale RO process. This finding contributes to better understanding of the variable removal of NDMA by RO processes. This study also investigated the removal characteristics of N-Nitrosamine precursors. The NF and RO processes greatly reduced NDMA formation potential (FP), but the UF process had little effect. The contributions of MF, NF, and RO processes for reducing FPs of NDMA, N-Nitrosopyrrolidine and N-Nitrosodiethylamine were different, suggesting different size distributions of their precursors.


Assuntos
Filtração/métodos , Nitrosaminas/análise , Purificação da Água/métodos , Conservação dos Recursos Hídricos , Dimetilnitrosamina , Membranas Artificiais , Nitrosaminas/síntese química , Osmose , Projetos Piloto , Temperatura , Ultrafiltração , Água
17.
Sci Total Environ ; 615: 964-971, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751447

RESUMO

Fifty-five pharmaceuticals were monitored at four rivers and inlets and/or outlets of three sewage treatment plants (STPs) in Yodo River watershed, Japan over 17 sampling events. Twenty-six quantified pharmaceuticals were classified by source and fate. The load per person (LPP) of nine pharmaceuticals, including six with observed mass balance in studied river stretch of <80%, was appreciably lower in river water (RW) than in the effluent (EF) of STPs (RW/EF <0.5), indicating that they were susceptible to in-stream attenuation in the study area, while the others were relatively conservative. The LPP of 12 pharmaceuticals in RW were within ±50% of that in EF. Because their mass loadings in rivers were correlated with human population in the catchment and most people use the sewer system, the major source of the 12 pharmaceuticals was considered to be STPs. The LPP of the three most labile pharmaceuticals in STPs (caffeine, theophylline, and acetaminophen) was >1.5 in RW/EF and <1.0 in RW/influent (IF) of STPs. Poorly treated sewage discharged from households without using the sewer system was considered to be influential source of the three pharmaceuticals. The LPP (RW/EF) of caffeine, a pharmaceutical contained in food and beverage, was considerably higher than that of the other two, and this is attributable to untreated gray water discharged at households using the night-soil treatment system. The LPP of two veterinary drugs (sulfamonomethoxine and lincomycin) were >1.5 (RW/EF) and >1.0 (RW/IF). Their mass loadings in rivers showed a positive correlation with swine population in the catchment, although sulfamonomethoxine is equally used in both cattle and swine farming. This was attributable to application of cattle excrement as manure, and lability of sulfamonomethoxine during composting processes. The major source of the two veterinary drugs was considered to be on-site treatment facilities of swine urine.


Assuntos
Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Japão , Rios/química
18.
Sci Total Environ ; 627: 1253-1263, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857090

RESUMO

Emerging contaminants in the aquatic environment have become a worldwide problem. Conventional wastewater treatment processes are ineffective for eliminating the emerging contaminants at trace concentrations. Nanomaterials possessing novel size-dependent properties, however, have shown great potential for removing these contaminants. Herein we reviewed nanomaterials reported for removing emerging contaminants by adsorption and/or photocatalysis, and their removal capacity, mechanism, and influencing factors are discussed. Meanwhile, a large-scale bibliometric analysis is conducted on the trends of the emerging contaminants, nanoadsorbents, nanophotocatalysts, and related research topics from the literature during 1998-2017.

19.
Environ Sci Pollut Res Int ; 25(2): 1903-1913, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29103120

RESUMO

Little is known about the mechanisms influencing the differences in attenuation of antibiotics between rivers. In this study, the natural attenuation of four antibiotics (azithromycin, clarithromycin, sulfapyridine, and sulfamethoxazole) during transport along the Thames River, UK, over a distance of 8.3 km, and the Katsura River, Japan, over a distance of 7.6 km was compared. To assist interpretation of the field data, the individual degradation and sorption characteristics of the antibiotics were estimated by laboratory experiments using surface water or sediment taken from the same rivers. Azithromycin, clarithromycin, and sulfapyridine were attenuated by 92, 48, and 11% in the Thames River stretch. The first-order decay constants of azithromycin and sulfapyridine were similar to those in the Katsura River, while that of clarithromycin was 4.4 times higher. For sulfamethoxazole, the attenuation was limited in both rivers. Loss of sulfapyridine was attributed to both direct and indirect photolysis in the Thames River, but to only direct photolysis in the Katsura River. Loss of azithromycin and clarithromycin was attributed to sorption to sediment in both rivers. The probable explanation behind the difference in loss rates of clarithromycin between the two rivers was considered to be sediment sorption capacity.


Assuntos
Antibacterianos/análise , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Antibacterianos/efeitos da radiação , Sedimentos Geológicos/química , Hidrologia , Japão , Modelos Teóricos , Fotólise , Reino Unido , Poluentes Químicos da Água/efeitos da radiação
20.
Ecotoxicol Environ Saf ; 144: 338-350, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28646739

RESUMO

Water samples were collected from effluent-dominated urban streams in Tokushima, Kyoto, and Saitama in Japan to roughly determine the contribution of pharmaceuticals and personal care products (PPCPs) and surfactants to whole toxicity of the water. Approximately 100 PPCPs including anionic surfactants such as linear alkylbenzene sulfonate (LAS), were chemically analyzed. Using 14 water samples, chronic or sub-chronic toxicity tests were conducted on three aquatic species, the green alga Raphidocelis subcapitata, the cladoceran Ceriodaphnia dubia, and the zebrafish Danio rerio. Bioassays for the selected individual PPCPs were conducted using the three species. Assuming the concentration addition (CA) model, the contribution of each PPCP to the whole toxicity of the riverwater was estimated based on toxicity unit (TU). The contribution of PPCPs, which primarily consists of a few antibiotic agents such as triclosan and clarithromycin, ranged from 0.9% to 69% of the whole toxicity of the water samples for algae, whereas the selected LAS congeners accounted for at most 5.3%. In contrast, the contribution of LAS ranged from 0.067% to 86% and from 0.021% to 27% of the whole toxicity for cladoceran and zebrafish, respectively, whereas that of PPCPs for these species was at most 2.1% at all sampling points. Our results suggest a limited contribution of PPCPs except for antimicrobial agents and the possible substantial contribution of LAS to toxicity in cladocerans and zebrafish.


Assuntos
Cosméticos/toxicidade , Preparações Farmacêuticas/análise , Rios/química , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Clorófitas/efeitos dos fármacos , Cosméticos/análise , Daphnia/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Japão , Tensoativos/análise , Testes de Toxicidade Crônica , Urbanização , Poluentes Químicos da Água/análise , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...