Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 24(3): 281-292, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28238723

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. While the role of NSAIDs as cyclooxygenase (COX) inhibitors is well established, other targets may contribute to anti-inflammation. Here we report caspases as a new pharmacological target for NSAID family drugs such as ibuprofen, naproxen, and ketorolac at physiologic concentrations both in vitro and in vivo. We characterize caspase activity in both in vitro and in cell culture, and combine computational modeling and biophysical analysis to determine the mechanism of action. We observe that inhibition of caspase catalysis reduces cell death and the generation of pro-inflammatory cytokines. Further, NSAID inhibition of caspases is COX independent, representing a new anti-inflammatory mechanism. This finding expands upon existing NSAID anti-inflammatory behaviors, with implications for patient safety and next-generation drug design.


Assuntos
Anti-Inflamatórios não Esteroides/química , Inibidores de Caspase/química , Caspases/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Caspase/metabolismo , Inibidores de Caspase/farmacologia , Caspases/química , Caspases Iniciadoras/química , Caspases Iniciadoras/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Ibuprofeno/química , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Concentração Inibidora 50 , Cetorolaco/química , Cetorolaco/metabolismo , Cetorolaco/farmacologia , Naproxeno/química , Naproxeno/metabolismo , Naproxeno/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato
2.
Nat Struct Mol Biol ; 23(11): 958-964, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723735

RESUMO

Caspases are cysteine proteases with critical roles in apoptosis. The Caenorhabditis elegans caspase CED-3 is activated by autocatalytic cleavage, a process enhanced by CED-4. Here we report that the CED-3 zymogen localizes to the perinuclear region in C. elegans germ cells and that CED-3 autocatalytic cleavage is held in check by C. elegans nuclei and activated by CED-4. The nuclear-pore protein NPP-14 interacts with the CED-3 zymogen prodomain, colocalizes with CED-3 in vivo and inhibits CED-3 autoactivation in vitro. Several missense mutations in the CED-3 prodomain result in stronger association with NPP-14 and decreased CED-3 activation by CED-4 in the presence of nuclei or NPP-14, thus leading to cell-death defects. Those same mutations enhance autocatalytic cleavage of CED-3 in vitro and increase apoptosis in vivo in the absence of npp-14. Our results reveal a critical role of nuclei and nuclear-membrane proteins in regulating the activation and localization of CED-3.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Caspases/análise , Caspases/genética , Ativação Enzimática , Células Germinativas/citologia , Células Germinativas/metabolismo , Mutação de Sentido Incorreto , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Domínios e Motivos de Interação entre Proteínas
3.
Cell Rep ; 16(2): 279-287, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346342

RESUMO

Endonuclease G (EndoG) is a mitochondrial protein that is released from mitochondria and relocated into the nucleus to promote chromosomal DNA fragmentation during apoptosis. Here, we show that oxidative stress causes cell-death defects in C. elegans through an EndoG-mediated cell-death pathway. In response to high reactive oxygen species (ROS) levels, homodimeric CPS-6-the C. elegans homolog of EndoG-is dissociated into monomers with diminished nuclease activity. Conversely, the nuclease activity of CPS-6 is enhanced, and its dimeric structure is stabilized by its interaction with the worm AIF homolog, WAH-1, which shifts to disulfide cross-linked dimers under high ROS levels. CPS-6 thus acts as a ROS sensor to regulate the life and death of cells. Modulation of the EndoG dimer conformation could present an avenue for prevention and treatment of diseases resulting from oxidative stress.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Endodesoxirribonucleases/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Cristalografia por Raios X , Regulação para Baixo , Endodesoxirribonucleases/química , Estabilidade Enzimática , Proteínas Mitocondriais/química , Modelos Moleculares , Oxirredução , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína
4.
Science ; 353(6297): 394-9, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27338704

RESUMO

Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , DNA Mitocondrial/metabolismo , Endodesoxirribonucleases/metabolismo , Fertilização , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Autofagia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Endodesoxirribonucleases/genética , Masculino , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatozoides/enzimologia , Espermatozoides/ultraestrutura
5.
Cell Cycle ; 14(12): 1771-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853217

RESUMO

Activation of caspases is an integral part of the apoptotic cell death program. Collectively, these proteases target hundreds of substrates, leading to the hypothesis that apoptosis is "death by a thousand cuts". Recent work, however, has demonstrated that caspase cleavage of only a subset of these substrates directs apoptosis in the cell. One such example is C. elegans CNT-1, which is cleaved by CED-3 to generate a truncated form, tCNT-1, that acquires a potent phosphoinositide-binding activity and translocates to the plasma membrane where it inactivates AKT survival signaling. We report here that ACAP2, a homolog of C. elegans CNT-1, has a pro-apoptotic function and an identical phosphoinositide-binding pattern to that of tCNT-1, despite not being an apparent target of caspase cleavage. We show that knockdown of ACAP2 blocks apoptosis in cancer cells in response to the chemotherapeutic antimetabolite 5-fluorouracil and that ACAP2 expression is down-regulated in some esophageal cancers, leukemias and lymphomas. These results suggest that ACAP2 is a functional homolog of C. elegans CNT-1 and its inactivation or downregulation in human cells may contribute to cancer development.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/patologia , Sequência de Aminoácidos , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Ativação Enzimática , Fluoruracila/química , Proteínas Ativadoras de GTPase/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HCT116 , Humanos , Ligantes , Lipídeos/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
6.
Nature ; 517(7533): 219-22, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25567286

RESUMO

Functional regeneration after nervous system injury requires transected axons to reconnect with their original target tissue. Axonal fusion, a spontaneous regenerative mechanism identified in several species, provides an efficient means of achieving target reconnection as a regrowing axon is able to contact and fuse with its own separated axon fragment, thereby re-establishing the original axonal tract. Here we report a molecular characterization of this process in Caenorhabditis elegans, revealing dynamic changes in the subcellular localization of the EFF-1 fusogen after axotomy, and establishing phosphatidylserine (PS) and the PS receptor (PSR-1) as critical components for axonal fusion. PSR-1 functions cell-autonomously in the regrowing neuron and, instead of acting in its canonical signalling pathway, acts in a parallel phagocytic pathway that includes the transthyretin protein TTR-52, as well as CED-7, NRF-5 and CED-6 (refs 9, 10, 11, 12). We show that TTR-52 binds to PS exposed on the injured axon, and can restore fusion several hours after injury. We propose that PS functions as a 'save-me' signal for the distal fragment, allowing conserved apoptotic cell clearance molecules to function in re-establishing axonal integrity during regeneration of the nervous system.


Assuntos
Apoptose/fisiologia , Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/metabolismo , Regeneração Nervosa/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Axônios/patologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Cones de Crescimento/metabolismo , Mutação , Fagócitos/metabolismo , Fagocitose , Fosfatidilserinas/metabolismo , Fosfoproteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Espectrina/genética , Espectrina/metabolismo
7.
Nat Struct Mol Biol ; 21(12): 1082-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25383666

RESUMO

Inactivation of cell-survival factors is a crucial step in apoptosis. The phosphoinositide 3-kinase (PI3K)-AKT signaling pathway promotes cell growth, proliferation and survival, and its deregulation causes cancer. How this pathway is suppressed to promote apoptosis is poorly understood. Here we report the identification of a CED-3 caspase substrate in Caenorhabditis elegans, CNT-1, that is cleaved during apoptosis to generate an N-terminal phosphoinositide-binding fragment (tCNT-1). tCNT-1 translocates from the cytoplasm to the plasma membrane and blocks AKT binding to phosphatidylinositol (3,4,5)-trisphosphate, thereby disabling AKT activation and its prosurvival activity. Our findings reveal a new mechanism that negatively regulates AKT cell signaling to promote apoptosis and that may restrict cell growth and proliferation in normal cells.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Caspases/metabolismo , Proteínas Ativadoras de GTPase/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Transporte Proteico
8.
Cell Res ; 24(2): 218-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24323044

RESUMO

During C. elegans apoptosis, the dicer ribonuclease (DCR-1) is cleaved by the cell death protease CED-3 to generate a truncated DCR-1 (tDCR-1) with one and a half ribonuclease III (RNase III) domains, converting it into a deoxyribonuclease (DNase) that initiates apoptotic chromosome fragmentation. We performed biochemical and functional analyses to understand this unexpected RNase to DNase conversion. In full-length DCR-1, tDCR-1 DNase activity is suppressed by its N-terminal DCR-1 sequence. However, not all the sequence elements in the N-terminal DCR-1 are required for this suppression. Our deletion analysis reveals that a 20-residue α-helix sequence in DCR-1 appears to define a critical break point for the sequence required for suppressing tDCR-1 DNase activity through a structure-dependent mechanism. Removal of the N-terminal DCR-1 sequence from tDCR-1 activates a DNA-binding activity that also requires the one half RNase IIIa domain, and enables tDCR-1 to process DNA. Consistently, structural modeling of DCR-1 and tDCR-1 suggests that cleavage of DCR-1 by CED-3 may cause a conformational change that allows tDCR-1 to bind and process DNA, and may remove steric hindrance that blocks DNA access to tDCR-1. Moreover, a new DNase can be engineered using different RNase III domains, including the one from bacterial RNase III. Our results indicate that very distantly related RNase III enzymes have the potential to cleave DNA when processed proteolytically or paired with an appropriate partner that facilitates binding to DNA. We suggest the possibility that this phenomenon may be extrapolated to other ribonucleases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Desoxirribonucleases/metabolismo , Ribonuclease III/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , DNA/metabolismo , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Ribonuclease III/química , Ribonuclease III/genética
9.
J Biol Chem ; 287(10): 7110-20, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22223640

RESUMO

Endonuclease G (EndoG) is a mitochondrial protein that traverses to the nucleus and participates in chromosomal DNA degradation during apoptosis in yeast, worms, flies, and mammals. However, it remains unclear how EndoG binds and digests DNA. Here we show that the Caenorhabditis elegans CPS-6, a homolog of EndoG, is a homodimeric Mg(2+)-dependent nuclease, binding preferentially to G-tract DNA in the optimum low salt buffer at pH 7. The crystal structure of CPS-6 was determined at 1.8 Å resolution, revealing a mixed αß topology with the two ßßα-metal finger nuclease motifs located distantly at the two sides of the dimeric enzyme. A structural model of the CPS-6-DNA complex suggested a positively charged DNA-binding groove near the Mg(2+)-bound active site. Mutations of four aromatic and basic residues: Phe(122), Arg(146), Arg(156), and Phe(166), in the protein-DNA interface significantly reduced the DNA binding and cleavage activity of CPS-6, confirming that these residues are critical for CPS-6-DNA interactions. In vivo transformation rescue experiments further showed that the reduced DNase activity of CPS-6 mutants was positively correlated with its diminished cell killing activity in C. elegans. Taken together, these biochemical, structural, mutagenesis, and in vivo data reveal a molecular basis of how CPS-6 binds and hydrolyzes DNA to promote cell death.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , DNA de Helmintos/química , Proteínas Mitocondriais/química , Modelos Moleculares , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , DNA de Helmintos/genética , DNA de Helmintos/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Hidrólise , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Relação Estrutura-Atividade
11.
Science ; 328(5976): 327-34, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20223951

RESUMO

Chromosome fragmentation is a hallmark of apoptosis, conserved in diverse organisms. In mammals, caspases activate apoptotic chromosome fragmentation by cleaving and inactivating an apoptotic nuclease inhibitor. We report that inactivation of the Caenorhabditis elegans dcr-1 gene, which encodes the Dicer ribonuclease important for processing of small RNAs, compromises apoptosis and blocks apoptotic chromosome fragmentation. DCR-1 was cleaved by the CED-3 caspase to generate a C-terminal fragment with deoxyribonuclease activity, which produced 3' hydroxyl DNA breaks on chromosomes and promoted apoptosis. Thus, caspase-mediated activation of apoptotic DNA degradation is conserved. DCR-1 functions in fragmenting chromosomal DNA during apoptosis, in addition to processing of small RNAs, and undergoes a protease-mediated conversion from a ribonuclease to a deoxyribonuclease.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caspases/metabolismo , Fragmentação do DNA , DNA de Helmintos/metabolismo , Desoxirribonucleases/metabolismo , Ribonuclease III/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Domínio Catalítico , Marcação In Situ das Extremidades Cortadas , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA de Helmintos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease III/química , Ribonuclease III/genética
12.
Mol Cell Biol ; 29(2): 448-57, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18981218

RESUMO

Cell death related nuclease 4 (CRN-4) is one of the apoptotic nucleases involved in DNA degradation in Caenorhabditis elegans. To understand how CRN-4 is involved in apoptotic DNA fragmentation, we analyzed CRN-4's biochemical properties, in vivo cell functions, and the crystal structures of CRN-4 in apo-form, Mn(2+)-bound active form, and Er(3+)-bound inactive form. CRN-4 is a dimeric nuclease with the optimal enzyme activity in cleaving double-stranded DNA in apoptotic salt conditions. Both mutational studies and the structures of the Mn(2+)-bound CRN-4 revealed the geometry of the functional nuclease active site in the N-terminal DEDDh domain. The C-terminal domain, termed the Zn-domain, contains basic surface residues ideal for nucleic acid recognition and is involved in DNA binding, as confirmed by deletion assays. Cell death analysis in C. elegans further demonstrated that both the nuclease active site and the Zn-domain are required for crn-4's function in apoptosis. Combining all of the data, we suggest a structural model where chromosomal DNA is bound at the Zn-domain and cleaved at the DEDDh nuclease domain in CRN-4 when the cell is undergoing apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans/química , Fragmentação do DNA , Endodesoxirribonucleases/química , Endonucleases/química , Motivos de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , DNA de Helmintos/metabolismo , Dimerização , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Zinco/metabolismo
13.
Nat Struct Mol Biol ; 15(10): 1094-101, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18776901

RESUMO

Inhibitor of apoptosis (IAP) proteins have a crucial role in apoptosis, through negative regulation of caspases in species from fruitflies to mammals. In Caenorhabditis elegans, however, no IAP homolog or caspase inhibitor has been identified, calling into question how the cell-killing caspase CED-3 can be negatively regulated. Here we show that inactivation of the C. elegans csp-3 gene, which encodes a protein similar to the small subunit of the CED-3 caspase, causes cells that normally live to undergo apoptosis in a CED-3-dependent manner. Biochemical analysis reveals that CSP-3 associates with the large subunit of the CED-3 zymogen and inhibits zymogen autoactivation. However, CSP-3 does not block CED-3 activation induced by CED-4, nor does it inhibit the activity of the activated CED-3 protease. Therefore CSP-3 uses a previously unreported mechanism to protect cells from apoptosis.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Inibidores de Caspase , Caspases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caspases/química , Caspases/genética , Sequência Conservada , Ativação Enzimática , Dados de Sequência Molecular , Mutação/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
14.
Reproduction ; 133(1): 21-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17244729

RESUMO

Natural and artificial substances present in the environment can affect our health. Testicular toxicants in particular are troublesome, because they disturb gonadal function of males. Translocation of substances into the seminiferous epithelium where sperm production proceeds is restricted due to the blood-testis barrier, but this permeability barrier temporarily disappears under physiological and sub-physiological conditions. This means that any substance could enter the seminiferous epithelium and disturb sperm production. To reduce the risk posed by such toxins, it is important to accurately determine which substances possess the toxicity. However, existing assay systems are not satisfactory in terms of both accuracy and sensitivity. Here, we report the establishment of such a system. We injected the androgen antagonists, flutamide and vinclozolin, directly into seminiferous tubules of live mice, which had been treated with busulfan for a temporal arrest of spermatogenesis, and the testes were histologically examined to see the effect of the injected materials on spermatogenesis that was in the process of recovery. The injection of either substance brought about a severe impairment of spermatogenesis at an amount over a million times smaller than that used in the previous assay systems where animals are administered with test substances outside of the testis. In contrast, these androgen antagonists at the same doses showed lesser effects when intratubularly or intraperitoneally administered into mice that had not been pretreated with busulfan. We propose that the method adopted in this study is a novel assay system to identify potential testicular toxicants.


Assuntos
Antagonistas de Androgênios/toxicidade , Flutamida/toxicidade , Oxazóis/toxicidade , Túbulos Seminíferos/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Testes de Toxicidade , Animais , Antineoplásicos/farmacologia , Barreira Hematotesticular , Bussulfano/farmacologia , Masculino , Camundongos , Microinjeções
15.
Mol Reprod Dev ; 71(2): 166-77, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15791597

RESUMO

Sertoli cells, a somatic cell type present within the seminiferous tubules of testes, are responsible for the phagocytic elimination of apoptotic spermatogenic cells. We here established an in vivo assay system that enables us to quantitatively analyze Sertoli cell phagocytosis of apoptotic cells in testes of live mice. Apoptotic cells were injected into the seminiferous tubules of spermatogenic cell-depleted mice, and the occurrence of phagocytosis by Sertoli cells was examined by histochemically analyzing testis sections or dispersed testicular cells. We reproducibly observed similar levels of phagocytosis in either examination, and the ratio of Sertoli cells that engulfed injected apoptotic cells was almost the same between the two examinations. These results indicated that a quantitative in vivo assay system was established using the seminiferous tubules of live mice as 'test tubes.' We then determined the requirements for Sertoli cell phagocytosis of apoptotic cells using this assay. For this purpose, apoptotic cells were injected together with various phagocytosis inhibitors, and the extent of phagocytosis by Sertoli cells was determined. The results revealed that Sertoli cells phagocytose apoptotic cells in a manner dependent on class B scavenger receptor type I (SR-BI) of Sertoli cells and phosphatidylserine exposed at the surface of target cells, as previously observed in vitro using primary cultures of dispersed rat testicular cells. Furthermore, the amount of SR-BI in Sertoli cells increased after injection of apoptotic cells into the seminiferous tubules, suggesting a positive feedback regulation of the expression of this phagocytosis receptor.


Assuntos
Apoptose , Fagocitose/fisiologia , Células de Sertoli/fisiologia , Espermatogênese/fisiologia , Animais , Humanos , Células Jurkat , Masculino , Camundongos , Ratos , Células de Sertoli/citologia
16.
Dev Growth Differ ; 46(3): 283-98, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15206959

RESUMO

Class B scavenger receptor type I (SR-BI), a multiligand membrane protein, exists in various organs and cell types. In the testis, SR-BI is expressed in two somatic cell types: Leydig cells and Sertoli cells. Unlike interstitially localized Leydig cells, Sertoli cells present within the seminiferous tubules keep contact with spermatogenic cells and form the tight junction to divide the seminiferous epithelium into the basal and adluminal compartments. In this study, the expression and function of SR-BI in rat Sertoli cells were examined with respect to dependency on the spermatogenic cycle, the plasma membrane polarity, and the pituitary hormone follicle-stimulating hormone (FSH). When the expression of SR-BI was histochemically examined with testis sections, both protein and mRNA were already present in Sertoli cells during the first-round spermatogenesis and continued to be detectable thereafter. The level of SR-BI mRNA expression in Sertoli cells was lower at spermatogenic stages I-VI than at other stages. SR-BI was present and functional (in mediating cellular incorporation of lipids of high density lipoprotein) at both the apical and basolateral surfaces of polarized Sertoli cells. Finally, SR-BI expression at both the protein and mRNA levels was stimulated by FSH in cultured Sertoli cells. These results indicate that SR-BI functions on both the apical and basolateral plasma membranes of Sertoli cells, and that SR-BI expression in Sertoli cells changes during the spermatogenic cycle and is stimulated, at least in cultures, by FSH.


Assuntos
Membrana Celular/metabolismo , Receptores Imunológicos/fisiologia , Células de Sertoli/fisiologia , Animais , Antígenos CD36 , Linhagem Celular , Polaridade Celular , Células Cultivadas , Hormônio Foliculoestimulante/fisiologia , Regulação da Expressão Gênica , Células Intersticiais do Testículo/fisiologia , Masculino , Ratos , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Receptores Depuradores , Receptores Depuradores Classe B , Espermatogênese , Testículo/citologia , Testículo/fisiologia , Junções Íntimas/metabolismo
17.
J Biol Chem ; 277(30): 27559-66, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12016218

RESUMO

Testicular Sertoli cells phagocytose apoptotic spermatogenic cells in a manner depending on the membrane phospholipid phosphatidylserine (PS) expressed at the surface of the latter cell type. Our previous studies have indicated that class B scavenger receptor type I (SR-BI) is responsible for the PS-mediated phagocytosis by Sertoli cells. We examined here whether SR-BI binds directly to PS. A cell line acquired the ability to bind to PS-exposing apoptotic cells and to incorporate PS-containing liposomes when it was forced to express SR-BI. Furthermore, the extracellular domain of rat SR-BI fused with human Fc (SRBIecd-Fc) bound to PS with a dissociation equilibrium constant of 2.4 x 10(-7) m in a cell-free solid-phase assay, whereas other phospholipids including phosphatidylethanolamine, phosphatidylinositol, and phosphatidylcholine were poor binding targets. The binding activity was enhanced when CaCl(2) was included in the assay or when SRBIecd-Fc was pre-treated with N-glycanase. A portion of the extracellular domain spanning amino acid positions 33 and 191 (numbered with respect to the amino terminus) fused with Fc (SRBI33-191-Fc) showed activity and phospholipid specificity equivalent to those of SRBIecd-Fc. Finally, SRBI33-191-Fc bound to the surface of apoptotic cells with externalized PS, and the injection of SRBI33-191-Fc into the seminiferous tubules of live mice increased the number of apoptotic spermatogenic cells. These results allowed us to conclude that SR-BI is a phagocytosis-inducing PS receptor of Sertoli cells.


Assuntos
Antígenos CD36/metabolismo , Proteínas de Membrana , Fagocitose , Fosfatidilserinas/química , Receptores Imunológicos , Receptores de Lipoproteínas , Células de Sertoli/metabolismo , Amidoidrolases/metabolismo , Animais , Apoptose , Western Blotting , Antígenos CD36/química , Células CHO , Sistema Livre de Células , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Marcação In Situ das Extremidades Cortadas , Células Jurkat , Ligantes , Masculino , Camundongos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica , Ratos , Receptores Depuradores , Proteínas Recombinantes/metabolismo , Receptores Depuradores Classe B , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...