Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 3671, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760778

RESUMO

Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Imunoterapia , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Cancer Lett ; 483: 12-21, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32330514

RESUMO

Prostate cancer (PCa) is characterized by a unique dependence on optimal androgen receptor (AR) activity where physiological androgen concentrations induce proliferation but castrate and supraphysiological levels suppress growth. This feature has been exploited in bipolar androgen therapy (BAT) for castrate resistant malignancies. Here, we investigated the role of the tumor suppressor protein p14ARF in maintaining optimal AR activity and the function of the AR itself in regulating p14ARF levels. We used a tumor tissue array of differing stages and grades to define the relationships between these components and identified a strong positive correlation between p14ARF and AR expression. Mechanistic studies utilizing CWR22 xenograft and cell culture models revealed that a decrease in AR reduced p14ARF expression and deregulated E2F factors, which are linked to p14ARF and AR regulation. Chromatin immunoprecipitation studies identified AR binding sites upstream of p14ARF. p14ARF depletion enhanced AR-dependent PSA and TMPRSS2 transcription, hence p14ARF constrains AR activity. However, p14ARF depletion ultimately results in apoptosis. In PCa cells, AR co-ops p14ARF as part of a feedback mechanism to ensure optimal AR activity for maximal prostate cancer cell survival and proliferation.


Assuntos
Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p14ARF/genética
4.
Elife ; 82019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31886769

RESUMO

The ESX (or Type VII) secretion systems are protein export systems in mycobacteria and many Gram-positive bacteria that mediate a broad range of functions including virulence, conjugation, and metabolic regulation. These systems translocate folded dimers of WXG100-superfamily protein substrates across the cytoplasmic membrane. We report the cryo-electron microscopy structure of an ESX-3 system, purified using an epitope tag inserted with recombineering into the chromosome of the model organism Mycobacterium smegmatis. The structure reveals a stacked architecture that extends above and below the inner membrane of the bacterium. The ESX-3 protomer complex is assembled from a single copy of the EccB3, EccC3, and EccE3 and two copies of the EccD3 protein. In the structure, the protomers form a stable dimer that is consistent with assembly into a larger oligomer. The ESX-3 structure provides a framework for further study of these important bacterial transporters.


Assuntos
Proteínas de Bactérias/química , Mycobacterium smegmatis/química , Transporte Proteico/genética , Sistemas de Secreção Tipo VII/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cromossomos/química , Cromossomos/genética , Epitopos/química , Epitopos/genética , Mycobacterium smegmatis/ultraestrutura , Óperon/genética , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/ultraestrutura
5.
Oncotarget ; 9(77): 34567-34581, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30349650

RESUMO

Treatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner. The decrease in cell viability was due to an induction of apoptosis and cell cycle arrest. These results were recapitulated in in vivo studies where selinexor decreased tumor growth. Tumors treated with selinexor expressed lower levels of XPO1, cyclin A, cyclin B, and CDK2 and increased levels of RB and CDK inhibitor p27, a result that is consistent with growth arrest. Cells expressing wildtype RB, a potent tumor suppressor that promotes growth arrest and apoptosis, were most susceptible to selinexor. Cell fractionation and immunofluorescence studies showed that selinexor treatment increased nuclear RB levels and mechanistic studies revealed that RB ablation curtailed the response to the drug. Conversely, limiting CDK4/6 dependent RB phosphorylation by palbociclib was additive with selinexor in reducing bladder tumor cell viability, confirming that RB activity has a role in the response to XPO1 inhibition. These results provide a rationale for XPO1 inhibition as a novel strategy for the treatment of bladder malignancies.

6.
Elife ; 62017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252385

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen that resides in a membrane-bound compartment, the inclusion. The bacteria secrete a unique class of proteins, Incs, which insert into the inclusion membrane and modulate the host-bacterium interface. We previously reported that IncE binds specifically to the Sorting Nexin 5 Phox domain (SNX5-PX) and disrupts retromer trafficking. Here, we present the crystal structure of the SNX5-PX:IncE complex, showing IncE bound to a unique and highly conserved hydrophobic groove on SNX5. Mutagenesis of the SNX5-PX:IncE binding surface disrupts a previously unsuspected interaction between SNX5 and the cation-independent mannose-6-phosphate receptor (CI-MPR). Addition of IncE peptide inhibits the interaction of CI-MPR with SNX5. Finally, C. trachomatis infection interferes with the SNX5:CI-MPR interaction, suggesting that IncE and CI-MPR are dependent on the same binding surface on SNX5. Our results provide new insights into retromer assembly and underscore the power of using pathogens to discover disease-related cell biology.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Receptor IGF Tipo 2/metabolismo , Nexinas de Classificação/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Análise Mutacional de DNA , Camundongos , Modelos Moleculares , Conformação Proteica , Mapeamento de Interação de Proteínas , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/genética , Nexinas de Classificação/química , Nexinas de Classificação/genética
7.
Mol Carcinog ; 55(5): 757-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25865490

RESUMO

Urothelial cell carcinoma of the bladder (UCCB) is the most common form of bladder cancer and it is estimated that ~15,000 people in the United States succumbed to this disease in 2013. Bladder cancer treatment options are limited and research to understand the molecular mechanisms of this disease is needed to design novel therapeutic strategies. Recent studies have shown that microRNAs play pivotal roles in the progression of cancer. miR-148a has been shown to serve as a tumor suppressor in cancers of the prostate, colon, and liver, but its role in bladder cancer has never been elucidated. Here we show that miR-148a is down-regulated in UCCB cell lines. We demonstrate that overexpression of miR-148a leads to reduced cell viability through an increase in apoptosis rather than an inhibition of proliferation. We additionally show that miR-148a exerts this effect partially by attenuating expression of DNA methyltransferase 1 (DNMT1). Finally, our studies demonstrate that treating cells with both miR-148a and either cisplatin or doxorubicin is either additive or synergistic in causing apoptosis. These data taken together suggest that miR-148a is a tumor suppressor in UCCB and could potentially serve as a novel therapeutic for this malignancy.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , MicroRNAs/genética , Neoplasias da Bexiga Urinária/genética , Urotélio/patologia , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/farmacologia , DNA (Citosina-5-)-Metiltransferase 1 , Regulação para Baixo , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Bexiga Urinária/patologia
8.
Oncol Rep ; 34(3): 1526-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26166215

RESUMO

Dicer expression is frequently altered in cancer and affects a wide array of cellular functions acting as an oncogene or tumor suppressor in varying contexts. It has been shown that Dicer expression is also deregulated in urothelial cell carcinoma of the bladder (UCCB) but the nature of this deregulation differs between reports. The aim of the present study was to gain a better understanding of the role of Dicer in bladder cancer to help determine its contribution to the disease. The results showed that Dicer transcript levels were decreased in UCCB tumor tissues as compared to normal tissues, suggesting that Dicer is a tumor suppressor. However, consistent with previous results, we demonstrated that knockdown of Dicer decreases cell viability and increases the induction of apoptosis, suggesting that Dicer is an oncogene. To resolve this discrepancy, we assessed the effects of decreased Dicer expression on epithelial-to­mesenchymal transition, migration and invasion. We showed that decreased Dicer levels promoted a mesenchymal phenotype and increased migration. Additionally, the results showed that Dicer protein ablation leads to increased cell invasion, higher levels of matrix metalloproteinase-2, and decreased levels of key miRNAs shown to inhibit invasion. The results of this study suggest that decreased Dicer levels may portend a more malignant phenotype.


Assuntos
Carcinoma de Células de Transição/genética , RNA Helicases DEAD-box/genética , Metaloproteinase 2 da Matriz/biossíntese , Ribonuclease III/genética , Neoplasias da Bexiga Urinária/genética , Apoptose/genética , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Helicases DEAD-box/biossíntese , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 2 da Matriz/genética , MicroRNAs/biossíntese , Invasividade Neoplásica/genética , Ribonuclease III/biossíntese , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...