Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612758

RESUMO

The prevention of tumor recurrence by the successful targeting of glioma stem cells endowed with a tumor-initiating capacity is deemed the key to the long-term survival of glioblastoma patients. Glioma stem cells are characterized by their marked therapeutic resistance; however, recent evidence suggests that they have unique vulnerabilities that may be therapeutically targeted. We investigated MDM2 expression levels in glioma stem cells and their non-stem cell counterparts and the effects of the genetic and pharmacological inhibition of MDM2 on the viability of these cells as well as downstream molecular pathways. The results obtained showed that MDM2 expression was substantially higher in glioma stem cells than in their non-stem cell counterparts and also that the inhibition of MDM2, either genetically or pharmacologically, induced a more pronounced activation of the p53 pathway and apoptotic cell death in the former than in the latter. Specifically, the inhibition of MDM2 caused a p53-dependent increase in the expression of BAX and PUMA and a decrease in the expression of survivin, both of which significantly contributed to the apoptotic death of glioma stem cells. The present study identified the MDM2-p53 axis as a novel therapeutic vulnerability, or an Achilles' heel, which is unique to glioma stem cells. Our results, which suggest that non-stem, bulk tumor cells are less sensitive to MDM2 inhibitors, may help guide the selection of glioblastoma patients suitable for MDM2 inhibitor therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Proteína Supressora de Tumor p53/genética , Glioma/tratamento farmacológico , Glioma/genética , Apoptose , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-mdm2/genética
2.
Cancers (Basel) ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686602

RESUMO

The development of MDM4 inhibitors as an approach to reactivating p53 in human cancer is attracting increasing attention; however, whether they affect the function of MDM2 and how they interact with MDM2 inhibitors remain unknown. We addressed this question in the present study using CEP-1347, an inhibitor of MDM4 protein expression. The effects of CEP-1347, the genetic and/or pharmacological inhibition of MDM2, and their combination on the p53 pathway in malignant brain tumor cell lines expressing wild-type p53 were investigated by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 alone or in combination with MDM2 on inhibition were examined by dye exclusion and/or colony formation assays. The treatment of malignant brain tumor cell lines with CEP-1347 markedly increased MDM2 protein expression, while blocking CEP-1347-induced MDM2 overexpression by genetic knockdown augmented the effects of CEP-1347 on the p53 pathway and cell growth. Blocking the MDM2-p53 interaction using the small molecule MDM2 inhibitor RG7112, but not MDM2 knockdown, reduced MDM4 expression. Consequently, RG7112 effectively cooperated with CEP-1347 to reduce MDM4 expression, activate the p53 pathway, and inhibit cell growth. The present results suggest the combination of CEP-1347-induced MDM2 overexpression with the selective inhibition of MDM2's interaction with p53, while preserving its ability to inhibit MDM4 expression, as a novel and rational strategy to effectively reactivate p53 in wild-type p53 cancer cells.

3.
Biomedicines ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509605

RESUMO

A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas.

4.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445993

RESUMO

The deregulation of the FOXM1 transcription factor is a key molecular alteration in ovarian cancer, contributing to the development and progression of ovarian cancer via activation of the target genes. As such, FOXM1 is a highly attractive therapeutic target in the treatment of ovarian cancer, but there has been no clinically tested FOXM1 inhibitor to date. We investigated in this study the effects of domatinostat, a class I-selective HDAC inhibitor currently in the clinical stage of development as a cancer therapeutic, on the expression of FOXM1 and viability of ovarian cancer cells. Cell viability, as well as protein and mRNA expression of FOXM1 and its transcriptional target survivin, was examined after domatinostat treatment of TOV21G and SKOV3 ovarian cancer cell lines in the absence or presence of cisplatin and paclitaxel. The effect of FOXM1 knockdown on survivin expression and those of genetic and pharmacological inhibition of survivin alone or in combination with the chemotherapeutic agents on cell viability were also examined. Domatinostat reduced the protein and mRNA expression of FOXM1 and survivin and also the viability of ovarian cancer cells alone and in combination with cisplatin or paclitaxel at clinically relevant concentrations. Knockdown experiments showed survivin expression was dependent on FOXM1 in ovarian cancer cells. Survivin inhibition was sufficient to reduce the viability of ovarian cancer cells alone and in combination with the chemotherapeutic agents. Our findings suggest that domatinostat, which effectively targets the FOXM1-survivin axis required for the viability of ovarian cancer cells, is a promising option for the treatment of ovarian cancer.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Survivina/genética , Survivina/metabolismo , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , RNA Mensageiro/genética , Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo
5.
Anticancer Res ; 43(3): 1131-1138, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854532

RESUMO

BACKGROUND/AIM: Givinostat is a pan-histone deacetylase (HDAC) inhibitor that has demonstrated excellent tolerability as well as efficacy in patients with polycythemia vera. Accumulating in vitro and in vivo evidence suggests givinostat is also promising as a therapeutic agent targeting glioma stem cells (GSCs), the cancer stem cells of glioblastoma (GBM) considered responsible for its intractable nature. However, it remains to be shown how givinostat impacts the therapeutic effects of temozolomide, a DNA-alkylating agent and the key component of GBM treatment given not only during postoperative radiotherapy but also thereafter as maintenance chemotherapy. MATERIALS AND METHODS: The effects of givinostat and knockdown of O6-methylguanine-DNA methyltransferase (MGMT) or Sp1 on the mRNA and protein expression of relevant genes in human GSC lines were examined by RT-PCR and western blot analyses. The dye exclusion method was used to evaluate cell viability. RESULTS: Givinostat enhanced the cytotoxic activity of temozolomide in GSC lines expressing MGMT, in which the MGMT expression was shown to contribute to their temozolomide resistance. Givinostat inhibited MGMT expression in GSCs and, in parallel, the expression of Sp1, a transcription factor involved in the control of MGMT promoter activity. Knockdown experiments demonstrated Sp1 expression was indeed required for MGMT expression in GSCs. CONCLUSION: Givinostat, in addition to its own cytotoxic activity, sensitizes GSCs to temozolomide by inhibiting Sp1-dependent MGMT expression in GSCs. Combining givinostat with temozolomide could therefore be a rational therapeutic strategy to effectively eliminate GSCs and thus help overcome the therapy resistance of GBM.


Assuntos
Glioblastoma , Glioma , Células-Tronco Neoplásicas , O(6)-Metilguanina-DNA Metiltransferase , Temozolomida , Humanos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genética
6.
Cancers (Basel) ; 16(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201546

RESUMO

Uveal melanoma (UM) is among the most common primary intraocular neoplasms in adults, with limited therapeutic options for advanced/metastatic disease. Since UM is characterized by infrequent p53 mutation coupled with the overexpression of MDM4, a major negative regulator of p53, we aimed to investigate in this study the effects on UM cells of CEP-1347, a novel MDM4 inhibitor with a known safety profile in humans. We also examined the impact of CEP-1347 on the protein kinase C (PKC) pathway, known to play a pivotal role in UM cell growth. High-grade UM cell lines were used to analyze the effects of genetic and pharmacological inhibition of MDM4 and PKC, respectively, as well as those of CEP-1347 treatment, on p53 expression and cell viability. The results showed that, at its clinically relevant concentrations, CEP-1347 reduced not only MDM4 expression but also PKC activity, activated the p53 pathway, and effectively inhibited the growth of UM cells. Importantly, whereas inhibition of either MDM4 expression or PKC activity alone failed to efficiently activate p53 and inhibit cell growth, inhibition of both resulted in effective activation of p53 and inhibition of cell growth. These data suggest that there exists a hitherto unrecognized interaction between MDM4 and PKC to inactivate the p53-dependent growth control in UM cells. CEP-1347, which dually targets MDM4 and PKC, could therefore be a promising therapeutic candidate in the treatment of UM.

7.
Anticancer Res ; 42(10): 4727-4733, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36192008

RESUMO

BACKGROUND/AIM: The development of pharmacological inhibitors targeting negative regulators of p53, such as murine double minute (MDM) 2 and, more recently, MDM4, has been actively pursued as a potential strategy to treat cancers with wild-type p53. We previously showed that CEP-1347, a small molecule kinase inhibitor originally developed for the treatment of Parkinson's disease, suppressed MDM4 expression and activated wild-type p53 in retinoblastoma cells. However, it remains unknown whether CEP-1347 acts as an MDM4 inhibitor and as such activates p53 in other types of human cancer cells. MATERIALS AND METHODS: The effects of CEP-1347 and MDM4 knockdown on the mRNA and protein expression of components of the p53 pathway, including MDM4, in human glioma cell lines with and without p53 mutation were examined by RT-PCR and western blot analyses. Trypan blue dye exclusion was used to examine the effect of CEP-1347 on cell growth. RESULTS: CEP-1347 decreased the expression of MDM4, increase that of p53, and activated the p53 pathway in glioma cells with wild-type p53. Knockdown-mediated inhibition of MDM4 expression in a glioma cell line with wild-type p53 that overexpresses MDM4 resulted in increased p53 expression and activation of the p53 pathway. CEP-1347 preferentially inhibited the growth of glioma cells with wild-type p53 without showing toxicity to normal cells at clinically relevant concentrations. CONCLUSION: Our findings suggest CEP-1347 is a novel inhibitor of MDM4 protein expression and as such activates p53 to inhibit the growth of cancer cells with wild-type p53, including retinoblastoma and glioblastoma.


Assuntos
Glioma , Neoplasias da Retina , Retinoblastoma , Carbazóis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955917

RESUMO

Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Fosfoinositídeo Fosfolipase C , Fosfolipases Tipo C/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897656

RESUMO

Cancer stem cells (CSCs) are in general characterized by higher resistance to cell death and cancer therapies than non-stem differentiated cancer cells. However, we and others have recently revealed using glioma stem cells (GSCs) as a model that, unexpectedly, CSCs have specific vulnerabilities that make them more sensitive to certain drugs compared with their differentiated counterparts. We aimed in this study to discover novel drugs targeting such Achilles' heels of GSCs as anti-GSC drug candidates to be used for the treatment of glioblastoma, the most therapy-resistant form of brain tumors. Here we report that domatinostat (4SC-202), a class I HDAC inhibitor, is one such candidate. At concentrations where it showed no or minimal growth inhibitory effect on differentiated GSCs and normal cells, domatinostat effectively inhibited the growth of GSCs mainly by inducing apoptosis. Furthermore, GSCs that survived domatinostat treatment lost their self-renewal capacity. These results suggested that domatinostat is a unique drug that selectively eliminates GSCs not only physically by inducing cell death but also functionally by inhibiting their self-renewal. Our findings also imply that class I HDACs and/or LSD1, another target of domatinostat, may possibly have a specific role in the maintenance of GSCs and therefore could be an attractive target in the development of anti-GSC therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Benzamidas , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioma/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...