Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432743

RESUMO

The U1RNP complex, Ro/SSA, and La/SSB are major RNA-containing autoantigens. Immune complexes (ICs) composed of RNA-containing autoantigens and autoantibodies are suspected to be involved in the pathogenesis of some systemic autoimmune diseases. Therefore, RNase treatment, which degrades RNA in ICs, has been tested in clinical trials as a potential therapeutic agent. However, no studies to our knowledge have specifically evaluated the effect of RNase treatment on the Fcγ receptor-stimulating (FcγR-stimulating) activity of RNA-containing ICs. In this study, using a reporter system that specifically detects FcγR-stimulating capacity, we investigated the effect of RNase treatment on the FcγR-stimulating activity of RNA-containing ICs composed of autoantigens and autoantibodies from patients with systemic autoimmune diseases such as systemic lupus erythematosus. We found that RNase enhanced the FcγR-stimulating activity of Ro/SSA- and La/SSB-containing ICs, but attenuated that of the U1RNP complex-containing ICs. RNase decreased autoantibody binding to the U1RNP complex, but increased autoantibody binding to Ro/SSA and La/SSB. Our results suggest that RNase enhances FcγR activation by promoting the formation of ICs containing Ro/SSA or La/SSB. Our study provides insights into the pathophysiology of autoimmune diseases involving anti-Ro/SSA and anti-La/SSB autoantibodies, and into the therapeutic application of RNase treatment for systemic autoimmune diseases.


Assuntos
Doenças Autoimunes , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , RNA , Ribonucleases/metabolismo , Ribonucleoproteínas/metabolismo , Doenças Autoimunes/tratamento farmacológico , Autoanticorpos , Autoantígenos , Endorribonucleases/metabolismo , Ribonuclease Pancreático/metabolismo
2.
Int Immunol ; 35(1): 43-52, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36053553

RESUMO

Many patients with severe COVID-19 suffer from pneumonia and the elucidation of the mechanisms underlying the development of this severe condition is important. The in vivo function of the ORF8 protein secreted by SARS-CoV-2 is not well understood. Here, we analyzed the function of ORF8 protein by generating ORF8-knockout SARS-CoV-2 and found that the lung inflammation observed in wild-type SARS-CoV-2-infected hamsters was decreased in ORF8-knockout SARS-CoV-2-infected hamsters. Administration of recombinant ORF8 protein to hamsters also induced lymphocyte infiltration into the lungs. Similar pro-inflammatory cytokine production was observed in primary human monocytes treated with recombinant ORF8 protein. Furthermore, we demonstrated that the serum ORF8 protein levels are well-correlated with clinical markers of inflammation. These results demonstrated that the ORF8 protein is a SARS-CoV-2 viral cytokine involved in the immune dysregulation observed in COVID-19 patients, and that the ORF8 protein could be a novel therapeutic target in severe COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Citocinas , Imunidade , Inflamação
3.
Sci Adv ; 8(9): eabj9867, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245125

RESUMO

Specific MHC class II alleles are strongly associated with susceptibility to various autoimmune diseases. Although the primary function of MHC class II molecules is to present peptides to helper T cells, MHC class II molecules also function like a chaperone to transport misfolded intracellular proteins to the cell surface. In this study, we found that autoantibodies in patients with Graves' disease preferentially recognize thyroid-stimulating hormone receptor (TSHR) complexed with MHC class II molecules of Graves' disease risk alleles, suggesting that the aberrant TSHR transported by MHC class II molecules is the target of autoantibodies produced in Graves' disease. Mice injected with cells expressing mouse TSHR complexed with MHC class II molecules, but not TSHR alone, produced anti-TSHR autoantibodies. These findings suggested that aberrant self-antigens transported by MHC class II molecules exhibit antigenic properties that differ from normal self-antigens and abrogate self-tolerance, providing a novel mechanism for autoimmunity.

4.
Cell ; 184(13): 3452-3466.e18, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34139176

RESUMO

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
5.
Biochem Biophys Res Commun ; 548: 167-173, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647792

RESUMO

Plasmodium falciparum causes the most severe form of malaria. Acquired immunity against P. falciparum provides insufficient protection even after repeated infections. Therefore, P. falciparum parasites might exploit inhibitory receptors for immune evasion. P. falciparum RIFINs are products of a multigene family consisting of 150-200 genes. Previously, we demonstrated that some RIFINs downregulate the immune response through the leukocyte immunoglobulin-like receptor (LILR) family inhibitory receptor, LILRB1, and leukocyte-associated immunoglobulin-like receptor 1, LAIR1. In this study, we further analyzed the expression of inhibitory receptor ligands on P. falciparum-infected erythrocytes and found that P. falciparum-infected erythrocytes expressed ligands for another LILR family inhibitory receptor, LILRB2, that recognizes HLA class I molecules as a host ligand. Furthermore, we identified that a specific RIFIN was a ligand for LILRB2 by using a newly developed RIFIN expression library. In addition, the domain 3 of LILRB2 was involved in RIFIN binding, whereas the domains 1 and 2 of LILRB2 were involved in the binding to HLA class I molecules. These results suggest that inhibitory receptor LILRB2 is also targeted by RIFIN for immune evasion of P. falciparum similar to LILRB1 and LAIR1.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Imunológicos/metabolismo , Animais , Eritrócitos/parasitologia , Feminino , Células HEK293 , Humanos , Ligantes , Malária Falciparum/parasitologia , Glicoproteínas de Membrana/química , Camundongos Endogâmicos BALB C , Ligação Proteica , Domínios Proteicos , Receptores Imunológicos/química
6.
Biochem Biophys Res Commun ; 509(1): 216-221, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30587340

RESUMO

Major histocompatibility complex class II (MHC II) molecules are mainly expressed on antigen presentation cells and play an important role in immune response. It has been reported that MHC II molecules are also detected in serum as a soluble form (sMHC II molecules), and they are considered to be involved in the maintenance of self-tolerance. However, the mechanism by which sMHC II molecules are produced remains unclear. Invariant chain (Ii), also called CD74, plays an important role in antigen presentation of MHC II molecules. In the present study, we analyzed the role of Ii on the production of sMHC II molecules. We found that the amount of sMHC II molecules in serum was decreased in Ii-deficient mice compared to wild-type mice. sMHC II molecules were secreted from cells transfected with MHC II molecules and Ii but not from cells transfected with MHC II molecules alone. Moreover, isoform p41 of Ii-transfected cells induced more sMHC II molecules compared to isoform p31-transfected cells. The molecular weight of sMHC II molecules from MHC II and Ii p41-transfected cells was approximately 60 kDa, indicating that sMHC II molecules are a single heterodimer of α and ß chains that is not associated with micro-vesicles. From the analysis of Ii-deletion mutants, we found that the luminal domain of Ii p41 is crucial for the production of sMHC II molecules. These results suggested that Ii has an important role in production of sMHC II molecules.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/sangue , Antígenos de Diferenciação de Linfócitos B/genética , Deleção de Genes , Células HEK293 , Antígenos de Histocompatibilidade Classe II/sangue , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/sangue , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Solubilidade , Transfecção
7.
Sci Rep ; 6: 33935, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659060

RESUMO

Extracellular vesicles (EVs) such as exosomes and microvesicles serve as messengers of intercellular network, allowing exchange of cellular components between cells. EVs carry lipids, proteins, and RNAs derived from their producing cells, and have potential as biomarkers specific to cell types and even cellular states. However, conventional methods (such as ultracentrifugation or polymeric precipitation) for isolating EVs have disadvantages regarding purity and feasibility. Here, we have developed a novel method for EV purification by using Tim4 protein, which specifically binds the phosphatidylserine displayed on the surface of EVs. Because the binding is Ca2+-dependent, intact EVs can be easily released from Tim4 by adding Ca2+ chelators. Tim4 purification, which we have applied to cell conditioned media and biofluids, is capable of yielding EVs of a higher purity than those obtained using conventional methods. The lower contamination found in Tim4-purified EV preparations allows more EV-specific proteins to be detected by mass spectrometry, enabling better characterization and quantification of different EV populations' proteomes. Tim4 protein can also be used as a powerful tool for quantification of EVs in both ELISA and flow cytometry formats. Thus, the affinity of Tim4 for EVs will find abundant applications in EV studies.

8.
J Environ Radioact ; 134: 54-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24661964

RESUMO

The radial and vertical distributions of radiocesium in tree stems were investigated to understand radiocesium transfer to trees at an early stage of massive contamination from the Fukushima nuclear disaster. A conifer species (Japanese red pine) and a broad-leaved species (Japanese konara oak) were selected to determine whether the radiocesium contamination pattern differs between species. Stem disks were collected at several heights and separated into outer bark, inner bark, and wood. The radiocesium concentration was the highest in the outer bark, followed by that in the inner bark and wood. The vertical distribution of the radiocesium concentration at each stem part differed between the species. The difference between species in radiocesium concentration of the outer bark could be explained by presence or absence of leaves at the time of the disaster. However, the reasons for the differences between species in the radiocesium concentration of the inner bark and wood are unclear. The radial distribution in the wood of the studied species showed a common pattern across stem disk heights and species. However, the radiocesium concentration ratio between sapwood and inner bark was significantly different between species. Although the radial contamination pattern in the wood was similar in the studied species during the early stage of contamination, the radiocesium transport pathway and allocation would be different between the species, and the contamination pattern will likely be different between the species at later stages. Continued investigations are important for understanding the radiocesium cycle and the accumulation of radiocesium in the tree stems of each species.


Assuntos
Radioisótopos de Césio/química , Acidente Nuclear de Fukushima , Pinus/química , Caules de Planta/química , Quercus/química
9.
Methods Mol Biol ; 745: 15-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660686

RESUMO

Resection of DNA double-strand break (DSB) ends, which results in 3(') single-stranded tails, is an early event of DSB repair and can be a critical determinant in choice of repair pathways and eventual genome stability. Current techniques for examining resection are restricted to model in vivo systems with defined substrates (i.e., HO-endonuclease targets). We present here a robust assay that can analyze not only the resection of site-specific DSBs which typically have "clean" double-strand ends but also random "dirty-ended" DSBs such as those generated by ionizing radiation and chemotherapeutic agents. The assay is based on our finding that yeast chromosomes with single-stranded DNA tails caused by resection are less mobile during pulsed-field gel electrophoresis (PFGE) than those without a tail. In combination with the use of a circular chromosome and enzymatic trimming of single-stranded DNA, resection of random DSBs can be easily detected and analyzed. This mobility-shift assay provides a unique opportunity to examine the mechanisms of resection, early events in DSB repair, as well as factors involved in pathway regulation.


Assuntos
Quebras de DNA de Cadeia Dupla , Telômero/genética , Southern Blotting , Reparo do DNA/genética , Eletroforese em Gel de Campo Pulsado , Proteínas de Plantas/metabolismo , Radiação Ionizante , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo
10.
DNA Repair (Amst) ; 10(1): 102-10, 2011 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-21115410

RESUMO

The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be under limited control by the tethering function of the RAD50/MRE11/XRS2 (MRX) complex. Using a system for differential fluorescent marking of both sides of an endonuclease-induced DSB in single cells, we found that nearly all DSBs are converted to CRBs in cells lacking both exonuclease 1 (EXO1) activity and MRX complex. Thus, it appears that some feature of exonuclease processing or resection at a DSB is critical for maintaining broken chromosome ends in close proximity. In addition, we discovered a thermal sensitive (cold) component to CRB formation in an MRX mutant that has implications for chromosome end mobility and/or end-processing.


Assuntos
DNA Helicases/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Quebra Cromossômica , Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Temperatura
11.
Gene ; 414(1-2): 32-40, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18372119

RESUMO

The Cdc7-Dbf4 complex is a conserved serine/threonine protein kinase essential for the initiation of eukaryotic DNA replication. Although an mcm5-bob1 mutation bypasses lethality conferred by mutations in CDC7 or DBF4, the Deltacdc7 mcm5-bob1 mutant is sensitive to hydroxyurea (HU), which induces replication stress. To elucidate the reasons for HU sensitivity conferred by deletion of CDC7, we examined the role of Cdc7-Dbf4 in the replication checkpoint. We found that in Cdc7-Dbf4-deficient cells exposed to replication stress, Rad53 remains in a hypophosphorylated form, anaphase spindle is elongated, and checkpoint-specific transcription is not induced. The hypophosphorylated Rad53 exhibits a low autophosphorylation activity, and recombinant Cdc7-Dbf4 phosphorylates Rad53 in vitro. These results suggest that Cdc7-Dbf4 is required for full activation of Rad53 in response to replication stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Replicação do DNA , DNA Fúngico/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Anáfase , Western Blotting , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Hidroxiureia/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fase S/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , beta-Galactosidase/metabolismo
13.
J Biol Chem ; 277(40): 37422-9, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12124389

RESUMO

DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.


Assuntos
DNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , DNA Polimerase II/química , DNA Polimerase II/metabolismo , Primers do DNA , Replicação do DNA , Desoxirribonucleotídeos/metabolismo , Exodesoxirribonuclease V , Exodesoxirribonucleases/genética , Deleção de Genes , Cinética , Dados de Sequência Molecular , Mutagênese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...