Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Ear Hear ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797886

RESUMO

OBJECTIVES: During an initial diagnostic assessment of an ear with normal otoscopic exam, it can be difficult to determine the specific pathology if there is a mechanical lesion. The audiogram can inform of a conductive hearing loss but not the underlying cause. For example, audiograms can be similar between the inner-ear condition superior canal dehiscence (SCD) and the middle-ear lesion stapes fixation (SF), despite differences in pathologies and sites of lesion. To gain mechanical information, wideband tympanometry (WBT) can be easily performed noninvasively. Absorbance , the most common WBT metric, is related to the absorbed sound energy and can provide information about specific mechanical pathologies. However, absorbance measurements are challenging to analyze and interpret. This study develops a prototype classification method to automate diagnostic estimates. Three predictive models are considered: one to identify ears with SCD versus SF, another to identify SCD versus normal, and finally, a three-way classification model to differentiate among SCD, SF, and normal ears. DESIGN: Absorbance was measured in ears with SCD and SF as well as normal ears at both tympanometric peak pressure (TPP) and 0 daPa. Characteristic impedance was estimated by two methods: the conventional method (based on a constant ear-canal area) and the surge method, which estimates ear-canal area acoustically.Classification models using multivariate logistic regression predicted the probability of each condition. To quantify expected performance, the condition with the highest probability was selected as the likely diagnosis. Model features included: absorbance-only, air-bone gap (ABG)-only, and absorbance+ABG. Absorbance was transformed into principal components of absorbance to reduce the dimensionality of the data and avoid collinearity. To minimize overfitting, regularization, controlled by a parameter lambda, was introduced into the regression. Average ABG across multiple frequencies was a single feature.Model performance was optimized by adjusting the number of principal components, the magnitude of lambda, and the frequencies included in the ABG average. Finally, model performances using absorbance at TPP versus 0 daPa, and using the surge method versus constant ear-canal area were compared. To estimate model performance on a population unknown by the model, the regression model was repeatedly trained on 70% of the data and validated on the remaining 30%. Cross-validation with randomized training/validation splits was repeated 1000 times. RESULTS: The model differentiating between SCD and SF based on absorbance-only feature resulted in sensitivities of 77% for SCD and 82% for SF. Combining absorbance+ABG improved sensitivities to 96% and 97%. Differentiating between SCD and normal using absorbance-only provided SCD sensitivity of 40%, which improved to 89% by absorbance+ABG. A three-way model using absorbance-only correctly classified 31% of SCD, 20% of SF and 81% of normal ears. Absorbance+ABG improved sensitivities to 82% for SCD, 97% for SF and 98% for normal. In general, classification performance was better using absorbance at TPP than at 0 daPa. CONCLUSION: The combination of wideband absorbance and ABG as features for a multivariate logistic regression model can provide good diagnostic estimates for mechanical ear pathologies at initial assessment. Such diagnostic automation can enable faster workup and increase efficiency of resources.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38622382

RESUMO

BACKGROUND: Sheep have been proposed as a large-animal model for studying cochlear implantation. However, prior sheep studies report that the facial nerve (FN) obscures the round window membrane (RWM), requiring FN sacrifice or a retrofacial opening to access the middle-ear cavity posterior to the FN for cochlear implantation. We investigated surgical access to the RWM in Hampshire sheep compared to Suffolk-Dorset sheep and the feasibility of Hampshire sheep for cochlear implantation via a facial recess approach. METHODS: Sixteen temporal bones from cadaveric sheep heads (ten Hampshire and six Suffolk-Dorset) were dissected to gain surgical access to the RWM via an extended facial recess approach. RWM visibility was graded using St. Thomas' Hospital (STH) classification. Cochlear implant (CI) electrode array insertion was performed in two Hampshire specimens. Micro-CT scans were obtained for each temporal bone, with confirmation of appropriate electrode array placement and segmentation of the inner ear structures. RESULTS: Visibility of the RWM on average was 83% in Hampshire specimens and 59% in Suffolk-Dorset specimens (p = 0.0262). Hampshire RWM visibility was Type I (100% visibility) for three specimens and Type IIa (> 50% visibility) for seven specimens. Suffolk-Dorset RWM visibility was Type IIa for four specimens and Type IIb (< 50% visibility) for two specimens. FN appeared to course more anterolaterally in Suffolk-Dorset specimens. Micro-CT confirmed appropriate CI electrode array placement in the scala tympani without apparent basilar membrane rupture. CONCLUSIONS: Hampshire sheep appear to be a suitable large-animal model for CI electrode insertion via an extended facial recess approach without sacrificing the FN. In this small sample, Hampshire specimens had improved RWM visibility compared to Suffolk-Dorset. Thus, Hampshire sheep may be superior to other breeds for ease of cochlear implantation, with FN and facial recess anatomy more similar to humans.

3.
J Assoc Res Otolaryngol ; 25(1): 53-61, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238525

RESUMO

PURPOSE: One of the major reasons that totally implantable cochlear microphones are not readily available is the lack of good implantable microphones. An implantable microphone has the potential to provide a range of benefits over external microphones for cochlear implant users including the filtering ability of the outer ear, cosmetics, and usability in all situations. This paper presents results from experiments in human cadaveric ears of a piezofilm microphone concept under development as a possible component of a future implantable microphone system for use with cochlear implants. This microphone is referred to here as a drum microphone (DrumMic) that senses the robust and predictable motion of the umbo, the tip of the malleus. METHODS: The performance was measured by five DrumMics inserted in four different human cadaveric temporal bones. Sensitivity, linearity, bandwidth, and equivalent input noise were measured during these experiments using a sound stimulus and measurement setup. RESULTS: The sensitivity of the DrumMics was found to be tightly clustered across different microphones and ears despite differences in umbo and middle ear anatomy. The DrumMics were shown to behave linearly across a large dynamic range (46 dB SPL to 100 dB SPL) across a wide bandwidth (100 Hz to 8 kHz). The equivalent input noise (over a bandwidth of 0.1-10 kHz) of the DrumMic and amplifier referenced to the ear canal was measured to be about 54 dB SPL in the temporal bone experiment and estimated to be 46 dB SPL after accounting for the pressure gain of the outer ear. CONCLUSION: The results demonstrate that the DrumMic behaves robustly across ears and fabrication. The equivalent input noise performance (related to the lowest level of sound measurable) was shown to approach that of commercial hearing aid microphones. To advance this demonstration of the DrumMic concept to a future prototype implantable in humans, work on encapsulation, biocompatibility, and connectorization will be required.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Orelha Média , Meato Acústico Externo , Cadáver
5.
J Assoc Res Otolaryngol ; 24(5): 487-497, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37684421

RESUMO

PURPOSE: Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep. METHODS: Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured. RESULTS: Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm. CONCLUSION: We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.


Assuntos
Otolaringologia , Osso Temporal , Ovinos , Animais , Osso Temporal/cirurgia , Orelha Média , Processo Mastoide/cirurgia , Janela da Cóclea
6.
ArXiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38196743

RESUMO

Objective: We present the "UmboMic," a prototype piezoelectric cantilever microphone designed for future use with totally-implantable cochlear implants. Methods: The UmboMic sensor is made from polyvinylidene difluoride (PVDF) because of its low Young's modulus and biocompatibility. The sensor is designed to fit in the middle ear and measure the motion of the underside of the eardrum at the umbo. To maximize its performance, we developed a low noise charge amplifier in tandem with the UmboMic sensor. This paper presents the performance of the UmboMic sensor and amplifier in fresh cadaveric human temporal bones. Results: When tested in human temporal bones, the UmboMic apparatus achieves an equivalent input noise of 32.3 dB SPL over the frequency range 100 Hz to 7 kHz, good linearity, and a flat frequency response to within 10 dB from about 100 Hz to 6 kHz. Conclusion: These results demonstrate the feasibility of a PVDF-based microphone when paired with a low-noise amplifier. The reported UmboMic apparatus is comparable in performance to a conventional hearing aid microphone. Significance: The proof-of-concept UmboMic apparatus is a promising step towards creating a totally-implantable cochlear implant. A completely internal system would enhance the quality of life of cochlear implant users.

7.
Hear Res ; 421: 108512, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35606210

RESUMO

HYPOTHESIS: To mechanically stimulate the round window (RW) membrane, an actuator with an interface coupler (IC) has the potential to improve sound transmission to the cochlea as compared to the most used RW stimulation device implanted today. If a proof-of-concept IC prototype shows promise as compared the most common method for RW stimulation, there is potential that future design development of an IC will be worthwhile. BACKGROUND: A variety of hearing pathologies resulting in mixed and conductive hearing loss can be addressed by mechanically stimulating the RW to transmit sound to the cochlea. The most common method for RW stimulation is with the floating mass transducer (FMT, Med-El). However, the FMT suffers poor sound transmission and unreliable device positioning. The dynamic range and bandwidth of the FMT as a RW stimulator is limited because the entire FMT needs freedom to vibrate. Thus the FMT has difficulty overcoming its own inertia and it cannot be stabilized in a manner that may limit its motion. Here we test an idea of using a generic actuator that vibrates on one side while stationary and held stable on the other (unlike the FMT), and coupling the actuator vibration to the RW membrane with a proof-of-concept IC designed to safely transmit sound to the cochlea. We determine if this proof-of-concept IC can perform as well or better than the FMT in one specimen. If so, further developments of the IC would be worthwhile. METHODS: RW sound transmission comparison was made between an ideally implanted FMT and a proof-of-concept IC prototype driven by a piezoelectric stack actuator with vibrating tip in a fresh human temporal bone. Velocities of stapes, FMT, and IC actuator were measured with laser Doppler vibrometry to determine bandwidth, linearity, and dynamic range of cochlear sound transmission. RESULTS: Stimulation with proof-of-concept prototype of the IC provided increased sound transmission, more linear output for larger dynamic range, and wider frequency range as compared to the FMT. This experiment demonstrates the potential of the IC concept to improve performance, and that it merits further development. However, it was challenging to stabilize the coupling between an external actuator and the proof-of-concept IC prototype. Thus, although we were successful in showing that this IC concept has promise, major design improvements and developments are required in the future. CONCLUSIONS: We demonstrated that the proof-of-concept IC prototype driven with a tip connected to a piezoelectric stack actuator can stimulate the RW membrane with improved acoustic performance as compared to the FMT in one specimen. This study demonstrated proof of concept: that the idea of an IC for sound transmission to the cochlea through the RW has potential, and that it would be worthwhile to pursue the IC idea with further developments. This idea has the potential to provide robust sound transmission to the cochlea via the RW while preventing possible trauma to the cochlea. We also learned that critical design improvements are necessary because coupling the generic external actuator to the IC was challenging. A possible future IC design is to integrate a piezoelectric actuator permanently to the IC, allowing only the soft balloon membrane of the IC to vibrate the RW while the rest of the exterior housing of the combined IC (with actuator) would not vibrate and would be stabilized in a fixed manner.


Assuntos
Prótese Ossicular , Janela da Cóclea , Estimulação Acústica/métodos , Humanos , Bigorna , Janela da Cóclea/fisiologia , Estribo/fisiologia , Osso Temporal/fisiologia , Vibração
8.
Ear Hear ; 43(2): 563-576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34387582

RESUMO

OBJECTIVE: Absorbance measured using wideband tympanometry (WBT) has been shown to be sensitive to changes in middle and inner ear mechanics, with potential to diagnose various mechanical ear pathologies. However, artifacts in absorbance due to measurement noise can obscure information related to pathologies and increase intermeasurement variability. Published reports frequently present absorbance that has undergone smoothing to minimize artifact; however, smoothing changes the true absorbance and can destroy important narrow-band characteristics such as peaks and notches at different frequencies. Because these characteristics can be unique to specific pathologies, preserving them is important for diagnostic purposes. Here, we identify the cause of artifacts in absorbance and develop a technique to mitigate artifacts while preserving the underlying WBT information. DESIGN: A newly developed Research Platform for the Interacoustics Titan device allowed us to study raw microphone recordings and corresponding absorbances obtained by WBT measurements. We investigated WBT measurements from normal hearing ears and ears with middle and inner ear pathologies for the presence of artifact and noise. Furthermore, it was used to develop an artifact mitigation procedure and to evaluate its effectiveness in mitigating artifacts without distorting the true WBT information. RESULTS: We observed various types of noise that can plague WBT measurements and that contribute to artifacts in computed absorbances, particularly intermittent low-frequency noise. We developed an artifact mitigation procedure that incorporates a high-pass filter and a Tukey window. This artifact mitigation resolved the artifacts from low-frequency noise while preserving characteristics in absorbance in both normal hearing ears and ears with pathology. Furthermore, the artifact mitigation reduced intermeasurement variability. CONCLUSIONS: Unlike smoothing algorithms used in the past, our artifact mitigation specifically removes artifacts caused by noise. It does not change frequency response characteristics, such as narrow-band peaks and notches in absorbance at different frequencies that can be important for diagnosis. Also, by reducing intermeasurement variability, the artifact mitigation can improve the test-retest reliability of these measurements.


Assuntos
Testes de Impedância Acústica , Orelha Interna , Testes de Impedância Acústica/métodos , Artefatos , Audição , Humanos , Reprodutibilidade dos Testes
9.
Otolaryngol Head Neck Surg ; 166(4): 738-745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281437

RESUMO

OBJECTIVE: Poor hearing outcomes often persist following total drum replacement tympanoplasty. To understand the mechanics of the reconstructed eardrum, we measured wideband acoustic immittance and compared the mechanical characteristics of fascia-grafted ears with the normal tympanic membrane. STUDY DESIGN: Prospective comparison study. SETTING: Tertiary care center. METHODS: Patients who underwent uncomplicated total drum replacement with temporalis fascia grafts were identified. Ears with healed grafts, an aerated middle ear, and no other conductive abnormalities were included. All patients underwent pre- and postoperative audiometry. Wideband acoustic immittance was measured with absorbance and impedance computed. Fascia-grafted ears were compared with normal unoperated ears. RESULTS: Eleven fascia-grafted ears without complications were included. Postoperatively, the median air-bone gap was 15 dB (250-4000 Hz), with variation across frequency and between ears. Fifty-six control ears were included. Absorbance of fascia-grafted ears was significantly lower than that of normal ears at 1 to 4 kHz (P < .05) but similar below 1 kHz. Impedance magnitude demonstrated deeper and sharper resonant notches in fascia-grafted ears than normal ears (P < .05), suggesting lower mechanical resistance of the fascia graft. CONCLUSION: The mechanics of fascia-grafted ears differ from the normal tympanic membrane by having lower absorbance at mid- to high frequencies and thus poor sound transmission. The lower resistance in fascia-grafted ears may be due to poor coupling of the graft to the malleus. To improve sound transmission, grafts for tympanic membrane reconstructions would benefit from refined mechanical properties.


Assuntos
Testes de Impedância Acústica , Timpanoplastia , Acústica , Orelha Média , Humanos , Estudos Prospectivos
10.
Front Neurol ; 12: 638574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889125

RESUMO

Patients with superior canal dehiscence syndrome (SCDS) can present with a range of auditory and/or vestibular signs and symptoms that are associated with a bony defect of the superior semicircular canal (SSC). Over the past two decades, advances in diagnostic techniques have raised the awareness of SCDS and treatment approaches have been refined to improve patient outcomes. However, a number of challenges remain. First, there is currently no standardized clinical testing algorithm for quantifying the effects of superior canal dehiscence (SCD). SCDS mimics a number of common otologic disorders and established metrics such as supranormal bone conduction thresholds and vestibular evoked myogenic potential (VEMP) measurements; although useful in certain cases, have diagnostic limitations. Second, while high-resolution computed tomography (CT) is the gold standard for the detection of SCD, a bony defect does not always result in signs and symptoms. Third, even when SCD repair is indicated, there is a lack of consensus about nomenclature to describe the SCD, ideal surgical approach, specific repair techniques, and type of materials used. Finally, there is no established algorithm in evaluation of SCDS patients who fail primary repair and may be candidates for revision surgery. Herein, we will discuss both contemporary and emerging diagnostic approaches for patients with SCDS and highlight challenges and controversies in the management of this unique patient cohort.

11.
IEEE Sens J ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-37786543

RESUMO

This paper presents an implantable microphone for sensing the displacement of the umbo, the end of the malleus where it attaches to the center tip of the cone-shaped tympanic membrane. The sensor comprises a piezoelectric polyvinylidene fluoride (PVDF) film with copper-nickel electrodes suspended across a brass cylinder. The cylinder is oriented so that the umbo pushes on the film center, causing a static and acoustically-driven dynamic film displacement. An amplifier filters the resulting piezoelectric charge to produce an output signal. The sensor enables the full implantation of assistive hearing devices, which can restore hearing without inhibiting the user's lifestyle, while enabling better sound localization in noisy environments.

12.
Sci Rep ; 10(1): 16564, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024221

RESUMO

Our ability to hear through bone conduction (BC) has long been recognized, but the underlying mechanism is poorly understood. Why certain perturbations affect BC hearing is also unclear. An example is BC hyperacusis (hypersensitive BC hearing)-an unnerving symptom experienced by patients with superior canal dehiscence (SCD). We measured BC-evoked sound pressures in scala vestibuli (PSV) and scala tympani (PST) at the basal cochlea in cadaveric human ears, and estimated hearing by the cochlear input drive (PDIFF = PSV - PST) before and after creating an SCD. Consistent with clinical audiograms, SCD increased BC-driven PDIFF below 1 kHz. However, SCD affected the individual scalae pressures in unexpected ways: SCD increased PSV below 1 kHz, but had little effect on PST. These new findings are inconsistent with the inner-ear compression mechanism that some have used to explain BC hyperacusis. We developed a computational BC model based on the inner-ear fluid-inertia mechanism, and the simulated effects of SCD were similar to the experimental findings. This experimental-modeling study suggests that (1) inner-ear fluid inertia is an important mechanism for BC hearing, and (2) SCD facilitates the flow of sound volume velocity through the cochlear partition at low frequencies, resulting in BC hyperacusis.


Assuntos
Audição/fisiologia , Hiperacusia/fisiopatologia , Deiscência do Canal Semicircular/fisiopatologia , Condução Óssea/fisiologia , Cadáver , Cóclea/fisiologia , Humanos , Líquidos Labirínticos/fisiologia , Rampa do Tímpano/fisiologia , Canais Semicirculares/fisiopatologia , Som
13.
Ear Hear ; 41(4): 804-810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31688316

RESUMO

OBJECTIVES: The diagnosis of superior canal dehiscence (SCD) is challenging and audiograms play an important role in raising clinical suspicion of SCD. The typical audiometric finding in SCD is the combination of increased air conduction (AC) thresholds and decreased bone conduction thresholds at low frequencies. However, this pattern is not always apparent in audiograms of patients with SCD, and some have hearing thresholds that are within the normal reference range despite subjective reports of hearing impairment. In this study, we used a human temporal bone model to measure the differential pressure across the cochlear partition (PDiff) before and after introduction of an SCD. PDiff estimates the cochlear input drive and provides a mechanical audiogram of the temporal bone. We measured PDiff across a wider frequency range than in previous studies and investigated whether the changes in PDiff in the temporal bone model and changes of audiometric thresholds in patients with SCD were similar, as both are thought to reflect the same physical phenomenon. DESIGN: We measured PDiff across the cochlear partition in fresh human cadaveric temporal bones before and after creating an SCD. Measurements were made for a wide frequency range (20 Hz to 10 kHz), which extends down to lower frequencies than in previous studies and audiograms. PDiff = PSV- PST is calculated from pressures measured simultaneously at the base of the cochlea in scala vestibuli (PSV) and scala tympani (PST) during sound stimulation. The change in PDiff after an SCD is created quantifies the effect of SCD on hearing. We further included an important experimental control-by patching the SCD, to confirm that PDiff was reversed back to the initial state. To provide a comparison of temporal bone data to clinical data, we analyzed AC audiograms (250 Hz to 8kHz) of patients with symptomatic unilateral SCD (radiographically confirmed). To achieve this, we used the unaffected ear to estimate the baseline hearing function for each patient, and determined the influence of SCD by referencing AC hearing thresholds of the SCD-affected ear with the unaffected contralateral ear. RESULTS: PDiff measured in temporal bones (n = 6) and AC thresholds in patients (n = 53) exhibited a similar pattern of SCD-related change. With decreasing frequency, SCD caused a progressive decrease in PDiff at low frequencies for all temporal bones and a progressive increase in AC thresholds at low frequencies. SCD decreases the cochlear input drive by approximately 6 dB per octave at frequencies below ~1 kHz for both PDiff and AC thresholds. Individual data varied in frequency and magnitude of this SCD effect, where some temporal-bone ears had noticeable effects only below 250 Hz. CONCLUSIONS: We found that with decrease in frequency the progressive decrease in low-frequency PDiff in our temporal bone experiments mirrors the progressive elevation in AC hearing thresholds observed in patients. This hypothesis remains to be tested in the clinical setting, but our findings suggest that that measuring AC thresholds at frequencies below 250 Hz would detect a larger change, thus improving audiograms as a diagnostic tool for SCD.


Assuntos
Cóclea , Rampa do Vestíbulo , Condução Óssea , Humanos , Rampa do Tímpano , Osso Temporal
14.
Proc Natl Acad Sci U S A ; 116(28): 13977-13982, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235601

RESUMO

Mammals detect sound through mechanosensitive cells of the cochlear organ of Corti that rest on the basilar membrane (BM). Motions of the BM and organ of Corti have been studied at the cochlear base in various laboratory animals, and the assumption has been that the cochleas of all mammals work similarly. In the classic view, the BM attaches to a stationary osseous spiral lamina (OSL), the tectorial membrane (TM) attaches to the limbus above the stationary OSL, and the BM is the major moving element, with a peak displacement near its center. Here, we measured the motion and studied the anatomy of the human cochlear partition (CP) at the cochlear base of fresh human cadaveric specimens. Unlike the classic view, we identified a soft-tissue structure between the BM and OSL in humans, which we name the CP "bridge." We measured CP transverse motion in humans and found that the OSL moved like a plate hinged near the modiolus, with motion increasing from the modiolus to the bridge. The bridge moved almost as much as the BM, with the maximum CP motion near the bridge-BM connection. BM motion accounts for 100% of CP volume displacement in the classic view, but accounts for only 27 to 43% in the base of humans. In humans, the TM-limbus attachment is above the moving bridge, not above a fixed structure. These results challenge long-held assumptions about cochlear mechanics in humans. In addition, animal apical anatomy (in SI Appendix) doesn't always fit the classic view.


Assuntos
Membrana Basilar/anatomia & histologia , Cóclea/anatomia & histologia , Orelha Interna/anatomia & histologia , Audição/fisiologia , Estimulação Acústica , Animais , Fenômenos Biomecânicos , Orelha Interna/fisiologia , Cobaias , Humanos , Mamíferos/fisiologia , Som , Membrana Tectorial/anatomia & histologia , Vibração
15.
Otol Neurotol ; 40(4): 535-542, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30870372

RESUMO

OBJECTIVE: Round window (RW) occlusion or reinforcement is a less-invasive option compared with direct repair approaches to improve symptoms of superior canal dehiscence (SCD) syndrome. However, RW surgery is associated with variable outcomes. Middle fossa craniotomy or transmastoid repair is an option for SCD patients who fail RW surgery, but it is unknown whether sequential repair following RW plugging improves SCD symptoms or increases complications. The objective of this study is to evaluate outcomes of SCD repair via middle fossa craniotomy following failed RW surgery. STUDY DESIGN: Retrospective review. SETTING: Academic tertiary care center. PATIENTS: Adult patients with SCD syndrome who underwent failed RW surgery followed by sequential middle fossa craniotomy and plugging of the arcuate eminence defect. Patients with SCD associated with the superior petrosal sinus were excluded. INTERVENTION: None. MAIN OUTCOME MEASURE: Prospectively collected pre- and postoperative symptom questionnaires, threshold audiograms, and cervical vestibular evoked myogenic potentials (cVEMP). RESULTS: Seven SCD patients (out of a total of 194 surgical cases at our institution) underwent sequential middle-fossa SCD repair following failed RW surgery. Resolution of symptoms and reversal of diagnostic indicators were observed in the majority of subjects following sequential repair. Two of seven patients underwent a third procedure with plugging of the superior semicircular canal by a transmastoid approach due to the presence of residual symptoms. CONCLUSION: Middle fossa craniotomy and SCD occlusion is a safe and reasonable option for patients who fail RW surgery. Our cohort did not show increased risks of auditory or vestibular dysfunction.


Assuntos
Doenças do Labirinto/cirurgia , Procedimentos Cirúrgicos Otológicos/métodos , Janela da Cóclea/cirurgia , Adulto , Estudos de Coortes , Feminino , Humanos , Doenças do Labirinto/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Canais Semicirculares/cirurgia , Potenciais Evocados Miogênicos Vestibulares
16.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841613

RESUMO

To develop totally implantable middle ear and cochlear implants, a miniature microphone that is surgically easy to implant and has a high sensitivity in a sufficient range of audio frequencies is needed. Of the various implantable acoustic sensors under development, only micro electro-mechanical system-type acoustic sensors, which attach to the umbo of the tympanic membrane, meet these requirements. We describe a new vibro-acoustic hybrid implantable microphone (VAHIM) that combines acceleration and sound pressure sensors. Each sensor can collect the vibration of the umbo and sound pressure of the middle ear cavity. The fabricated sensor was implanted into a human temporal bone and the noise level and sensitivity were measured. From the experimental results, it is shown that the proposed method is able to provide a wider-frequency band than conventional implantable acoustic sensors.


Assuntos
Técnicas Biossensoriais , Implantes Cocleares , Auxiliares de Audição , Humanos , Desenho de Prótese
17.
Otol Neurotol ; 40(2): e115-e118, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30624402

RESUMO

OBJECTIVE: To describe the first reported case of a fracture of the long process of the incus due to digital manipulation of the ear canal and to discuss diagnostic markers for ossicular fractures. PATIENT: A 46-year-old woman with incessant clicking and crunching in her left ear, and hearing loss after digital manipulation of the ear canal. INTERVENTION: Diagnostic evaluation and therapeutic ossiculoplasty. MAIN OUTCOME MEASURE(S): Audiometric and wideband acoustic immittance (WAI) measurements were made before surgery to investigate the cause of clicking sounds and mild conductive hearing loss (CHL). RESULTS: The clinical suspicion of a loose ossicular chain was confirmed by a large narrow-band decrease in power reflectance (calculated from WAI) at frequencies between 600 and 700 Hz, and a mid- to high-frequency air-bone gap. Exploratory tympanotomy revealed an ossicular fracture of the distal aspect of the long process of the incus. Ossiculoplasty with bone cement resolved bothersome clicking sounds. CONCLUSION: A finger inserted into the ear canal can produce an air seal, and subsequent quick removal of the finger can result in the fracture of an ossicle. Clinicians should be cognizant of this form of trauma because insertion of a finger, ear plug, and earphone into the ear canal are common. Ossicular fractures can result in high-frequency CHL, and can be misdiagnosed as sensorineural loss because bone conduction thresholds are not measured above 4 kHz. As in this case, an ossicular fracture may be misdiagnosed and result in inappropriate treatment. Here, WAI, a non-invasive measure of ear mechanics, diagnosed a loose ossicular chain.


Assuntos
Técnicas de Diagnóstico Otológico , Fraturas Ósseas/diagnóstico , Bigorna/lesões , Acústica , Feminino , Fraturas Ósseas/etiologia , Humanos , Pessoa de Meia-Idade
18.
J Assoc Res Otolaryngol ; 19(5): 523-539, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171386

RESUMO

Bone conduction (BC) is heavily relied upon in the diagnosis and treatment of hearing loss, but is poorly understood. For example, the relative importance and frequency dependence of various identified BC sound transmission mechanisms that contribute to activate the cochlear partition remain unknown. Recently, we have developed techniques in fresh human cadaveric specimens to directly measure scalae pressures with micro-fiberoptic sensors, enabling us to monitor the input pressure drive across the cochlear partition that triggers the cochlear traveling wave during air conduction (AC) and round-window stimulation. However, BC stimulation poses challenges that can result in inaccurate intracochlear pressure measurements. Therefore, we have developed a new technique described here that allows for precise measurements during BC. Using this new technique, we found that BC stimulation resulted in pressure in scala vestibuli that was significantly higher in magnitude than in scala tympani for most frequencies, such that the differential pressure across the partition-the input pressure drive-was similar to scala vestibuli pressure. BC (stimulated by a Bone Anchored Hearing Aid [Baha]) showed that the mechanisms of sound transmission in BC differ from AC, and also showed the limitations of the Baha bandwidth. Certain kinematic measurements were generally proportional to the cochlear pressure input drive: for AC, velocity of the stapes, and for BC, low-frequency acceleration and high-frequency velocity of the cochlear promontory. Therefore, our data show that to estimate cochlear input drive in normal ears during AC, stapes velocity is a good measure. During BC, cochlear input drive can be estimated for low frequencies by promontory acceleration (though variable across ears), and for high frequencies by promontory velocity.


Assuntos
Condução Óssea/fisiologia , Cóclea/fisiologia , Som , Osso Temporal/fisiologia , Testes de Impedância Acústica , Humanos , Pressão
19.
Hear Res ; 367: 17-31, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30015103

RESUMO

For almost a decade, we have measured intracochlear sound pressures evoked by air conducted (AC) sound presented to the ear canal in many fresh human cadaveric specimens. Similar measurements were also obtained during round window (RW) mechanical stimulation in multiple specimens. In the present study, we use our accumulated data of intracochlear pressures and simultaneous velocity measurements of the stapes or RW to determine acoustic impedances of the cochlear partition, RW, and the leakage paths from scala vestibuli and scala tympani, as well as the reverse middle ear impedance. With these impedances, we develop a computational lumped-element model of the normal ear that illuminates fundamental mechanisms of sound transmission. To calculate the impedances for our model, we use data that passes strict inclusion criteria of: (a) normal middle-ear transfer function defined as the ratio of stapes velocity to ear-canal sound pressure, (b) no evidence of air within the inner ear, and (c) tight control of the pressure sensor sensitivity. After this strict screening, updated normal means, as well as individual representative data, of ossicular velocities and intracochlear pressures for AC and RW stimulation are used to calculate impedances. This work demonstrates the existence and the value of physiological acoustic leak impedances that can sometimes contribute significantly to sound transmission for some stimulation modalities. This model allows understanding of human sound transmission mechanisms for various sound stimulation methods such as AC, RW, and bone conduction, as well as sound transmission related to otoacoustic emissions.


Assuntos
Condução Óssea , Cóclea/fisiologia , Orelha Média/fisiologia , Mecanotransdução Celular , Modelos Teóricos , Som , Osso Temporal/fisiologia , Estimulação Acústica , Cadáver , Simulação por Computador , Humanos , Movimento (Física) , Emissões Otoacústicas Espontâneas , Pressão , Fatores de Tempo , Vibração
20.
Trends Hear ; 22: 2331216518774450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29732950

RESUMO

We report the fabrication and characterization of a prototype polyvinylidene fluoride polymer-based implantable microphone for detecting sound inside gerbil and human cochleae. With the current configuration and amplification, the signal-to-noise ratios were sufficiently high for normally occurring sound pressures and frequencies (ear canal pressures >50-60 dB SPL and 0.1-10 kHz), though 10 to 20 dB poorer than for some hearing aid microphones. These results demonstrate the feasibility of the prototype devices as implantable microphones for the development of totally implantable cochlear implants. For patients, this will improve sound reception by utilizing the outer ear and will improve the use of cochlear implants.


Assuntos
Cóclea/fisiologia , Implantes Cocleares , Polivinil , Desenho de Prótese , Razão Sinal-Ruído , Animais , Estudos de Viabilidade , Gerbillinae , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...