Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18452, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116228

RESUMO

With the recent advances in ultrahigh intensity lasers, exotic astrophysical phenomena can be investigated in laboratory environments. Collisionless shock in a plasma, prevalent in astrophysical events, is produced when a strong electric or electromagnetic force induces a shock structure in a time scale shorter than the collision time of charged particles. A near-critical-density (NCD) plasma, generated with an intense femtosecond laser, can be utilized to excite a collisionless shock due to its efficient and rapid energy absorption. We present electrostatic shock acceleration (ESA) in experiments performed with a high-density helium gas jet, containing a small fraction of hydrogen, irradiated with a 30 fs, petawatt laser. The onset of ESA exhibited a strong dependence on plasma density, consistent with the result of particle-in-cell simulations on relativistic plasma dynamics. The mass-dependent ESA in the NCD plasma, confirmed by the preferential reflection of only protons with two times the shock velocity, opens a new possibility of selective acceleration of ions by electrostatic shock.

3.
Sci Rep ; 7(1): 10203, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860579

RESUMO

The achievable energy and the stability of accelerated electron beams have been the most critical issues in laser wakefield acceleration. As laser propagation, plasma wave formation and electron acceleration are highly nonlinear processes, the laser wakefield acceleration (LWFA) is extremely sensitive to initial experimental conditions. We propose a simple and elegant waveform control method for the LWFA process to enhance the performance of a laser electron accelerator by applying a fully optical and programmable technique to control the chirp of PW laser pulses. We found sensitive dependence of energy and stability of electron beams on the spectral phase of laser pulses and obtained stable 2-GeV electron beams from a 1-cm gas cell of helium. The waveform control technique for LWFA would prompt practical applications of centimeter-scale GeV-electron accelerators to a compact radiation sources in the x-ray and γ-ray regions.

4.
Light Sci Appl ; 6(5): e17063, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30167255
6.
Sci Rep ; 6: 30491, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27457890

RESUMO

The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 10(22)-10(23) photons/s/mm(2)/mrad(2)/0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance. Here, we present a new regime of betatron γ-ray radiation generated by stimulating a large-amplitude transverse oscillation of a continuously injected electron bunch through the hosing of the bubble induced by the carrier envelope phase (CEP) effect of the self-steepened laser pulse. Our method increases the critical photon energy to the MeV level, according to the results of particle-in-cell (PIC) simulations. The highly collimated, energetic and femtosecond γ-ray bursts that are produced in this way may provide an interesting potential means of exploring nuclear physics in table top photo nuclear reactions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26062737

RESUMO

To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.


Assuntos
Elétrons , Indústrias , Lasers , Medicina , Radiação , Dinâmica não Linear , Gases em Plasma/química
8.
Rev Sci Instrum ; 86(12): 123116, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724015

RESUMO

We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

9.
Rev Sci Instrum ; 78(3): 036102, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17411227

RESUMO

For multiple laser pulse experiments, it is necessary to split a laser pulse. In order to split a short laser pulse without stretching the pulse width, the laser pulse should not pass through thick materials. For this reason, a pellicle beam splitter (BS) and/or a mirror with a hole are required as a BS for the short laser pulse. The focusing qualities of the laser pulse after passing through the pellicle BS and the mirror with a hole are the same as without the BS's. The laser pulse quality reflected by the BSs should be considered for the laser pulse. A pellicle BS is a thin foil, so, it is weak against vibrations. One should be careful about airflows and isolation from vibration sources. The spot size of the reflected laser pulse is consistent with the size reflected by a normal mirror. The energy loss is about 10% compared with a normal mirror. A mirror with a hole is strong against external vibrations. The reflected laser pulse has a doughnut shape. The reflected laser pulse is interfered due to the shape. In order to cleanly focus the laser pulse, the inside size of the doughnut should be smaller than a half size of the outside portion of the doughnut.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036407, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16605668

RESUMO

We use a one-shot measurement technique to study effects of laser prepulses on the electron laser wakefield acceleration driven by relativistically intense laser pulses (lambda=790 nm, 11 TW, 37 fs) in dense helium gas jets. A quasimonoenergetic electron bunch with an energy peak approximately 11.5 MeV[DeltaE/E approximately 10% (FWHM)] and with a narrow-cone angle (0.04pi mm mrad) of ejection is detected at a plasma density of 8 x 10(19) cm(-3). A strong correlation between the generation of monoenergetic electrons and optical guiding of the pulse in a thin channel produced by picosecond laser prepulses is observed. This generation mechanism is well corroborated by two-dimensional particle-in-cell simulations.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 2): 036407, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12689171

RESUMO

Spatial and energy distributions of energetic electrons produced by an ultrashort, intense laser pulse with a short focal length optical system (Ti:sapphire, 12 TW, 50 fs, lambda=790 nm, f/3.5) in a He gas jet are measured. They are shown to depend strongly on the contrast ratio and shape of the laser prepulse. The wave breaking of the plasma waves at the front of the shock wave formed by a proper laser prepulse is found to make a narrow-cone (0.1pi mm mrad) electron injection. These electrons are further accelerated by the plasma wake field generated by the laser pulse up to tens of MeV forming a Maxwell-like energy distribution. In the case of nonmonotonic prepulse, hydrodynamic instability at the shock front leads to a broader, spotted spatial distribution. The numerical analysis based on a two-dimensional (2D) hydrodynamic (for the laser prepulse) and 2D particle-in-cell (PIC) simulation justifies the mechanism of electron acceleration. The PIC calculation predicts that electrons with energy from 10 to 40 MeV form a bunch with a pulse duration of about 40 fs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...