Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(2): e10452, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925712

RESUMO

Periodontitis induced by chronic subgingival infection is a ubiquitous disease that causes systemic inflammatory consequences and poses a negative impact on quality of life. The disease is treated and potentially prevented by patient's self-care aimed at eliminating the oral pathogens from the region. Currently available products for interdental self-care, including dental floss and interdental brush, have limited ability to prevent the disease. Here, we report a coated dental floss thread, termed "nanofloss," which uses polyphenol-based nanocoating to functionalize the floss thread with therapeutic agents. Multiple therapeutics can be integrated into the nanofloss including antibacterial small molecules and proteins. Flossing with nanofloss-delivered therapeutic agents to the challenging subgingival region with long-term retention even against the flushing action of the oral fluid in vivo. Our in vitro and in vivo studies demonstrate that chlorhexidine gluconate-loaded nanofloss effectively treats the subgingival infection by Porphyromonas gingivalis. Collectively, the nanofloss offers a promising and easily usable tool for targeted self-care of subgingival infection against periodontitis.

2.
J Control Release ; 352: 1093-1103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351520

RESUMO

Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Lipossomos/uso terapêutico , Bromelaínas/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Hialurônico/uso terapêutico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Matriz Extracelular , Linhagem Celular Tumoral
3.
Front Immunol ; 12: 766170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707622

RESUMO

Background & Aims: Periodontitis increases the risk of nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms are unclear. Here, we show that gut dysbiosis induced by oral administration of Porphyromonas gingivalis, a representative periodontopathic bacterium, is involved in the aggravation of NAFLD pathology. Methods: C57BL/6N mice were administered either vehicle, P. gingivalis, or Prevotella intermedia, another periodontopathic bacterium with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, l-amino acid-defined, high-fat diet with 60 kcal% fat and 0.1% methionine (CDAHFD60). The gut microbial communities were analyzed by pyrosequencing the 16S ribosomal RNA genes. Metagenomic analysis was used to determine the relative abundance of the Kyoto Encyclopedia of Genes and Genomes pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance-based metabolomics coupled with multivariate statistical analyses. Hepatic gene expression profiles were analyzed via DNA microarray and quantitative polymerase chain reaction. Results: CDAHFD60 feeding induced hepatic steatosis, and in combination with bacterial administration, it further aggravated NAFLD pathology, thereby increasing fibrosis. Gene expression analysis of liver samples revealed that genes involved in NAFLD pathology were perturbed, and the two bacteria induced distinct expression profiles. This might be due to quantitative and qualitative differences in the influx of bacterial products in the gut because the serum endotoxin levels, compositions of the gut microbiota, and serum metabolite profiles induced by the ingested P. intermedia and P. gingivalis were different. Conclusions: Swallowed periodontopathic bacteria aggravate NAFLD pathology, likely due to dysregulation of gene expression by inducing gut dysbiosis and subsequent influx of gut bacteria and/or bacterial products.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/microbiologia , Porphyromonas gingivalis , Prevotella intermedia , Administração Oral , Animais , Deficiência de Colina , Dieta Hiperlipídica , Fezes/microbiologia , Células Hep G2 , Humanos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Ribossômico 16S
4.
Biomaterials ; 276: 121069, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403848

RESUMO

Almost 50 % of the U.S. population suffers from oral infections such as periodontitis. Current treatment options for periodontitis include mechanical cleaning procedures, which are performed often under local anesthesia and are time-consuming. Alternate option includes systemic antibiotics which increase the risk of antimicrobial resistance and are not recommended for prolonged usage. Topical treatments of gingiva-based antimicrobial agents have shown limited efficacy due to poor penetration of the therapeutic into deep gingiva where the infection resides. Herein, we report an Iongel of a Deep Eutectic Antimicrobial (IDEA), which simultaneously exhibits deep tissue penetration and antimicrobial activity against P. gingivalis. In vivo studies confirmed that IDEA successfully penetrated into the gingiva and the gingival sulcus, where the pathogens primarily exist, within a short time. In vitro studies confirmed that the dose delivered was adequate to inactivate P. gingivalis biofilm. In vivo studies in a periodontal rat model confirmed that a topical treatment of IDEA eliminated pathogenic bacteria, and the disease progression was significantly suppressed. Safety studies confirmed excellent tolerance to IDEA. Altogether, IDEA offers a promising topical agent against periodontitis.


Assuntos
Anti-Infecciosos , Periodontite , Animais , Biofilmes , Gengiva , Periodontite/tratamento farmacológico , Porphyromonas gingivalis , Ratos
5.
Int J Dent ; 2019: 1394678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31015837

RESUMO

OBJECTIVES: Several serum biomarkers have been reported to increase in periodontitis patients as possible mediators linking periodontal inflammation to systemic diseases. However, the relationship between periodontitis and urine biomarkers is still unclear. The aim of this cross-sectional study was to investigate potential urine biomarkers of periodontitis in a Japanese population. MATERIALS AND METHODS: This study included 108 male subjects, and microbiological and clinical parameters were evaluated as a periodontitis marker. The correlation between nine urine biomarkers (typically used to diagnose kidney disease) and periodontal parameters was analyzed. Based on the findings, ß 2-microglobulin (ß 2-MG) and neutrophil gelatinase-associated lipocalin (NGAL) were selected for comparison and multivariate regression analysis, and the Kruskal-Wallis test followed by Bonferroni correction was used to identify differences in their concentrations between the three periodontitis groups (severe, moderate, and no/mild periodontitis). RESULTS: ß 2-MG and NGAL exhibited a significant correlation with clinical parameters of periodontitis. The prevalence of clinical parameters such as bleeding on probing and number of sites with probing depth (PD) ≥ 6 mm were greater in the ß 2-MG high group (≥300 µg/g creatinine) than in the normal group (P=0.017 and 0.019, respectively). Multivariate regression analysis indicated that the number of sites with PD ≥ 6 mm was independently associated with urine ß 2-MG. Moreover, the number of sites with the clinical attachment level (CAL) ≥ 6 mm was greater in the NGAL high group (highest quartile) (P=0.041). Multivariate regression analysis showed that the number of sites with CAL ≥ 6 mm was associated independently with urine NGAL. Finally, ß 2-MG was significantly higher in the severe periodontitis subjects compared to the no/mild periodontitis subjects. CONCLUSION: The significant association between urine ß 2-MG or NGAL and periodontitis was revealed. These biomarkers can potentially be used to screen for or diagnose periodontitis. This trial is registered with the UMIN Clinical Trials Registry UMIN000013485.

6.
mSphere ; 3(5)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333180

RESUMO

Periodontal disease induced by periodontopathic bacteria like Porphyromonas gingivalis is demonstrated to increase the risk of metabolic, inflammatory, and autoimmune disorders. Although precise mechanisms for this connection have not been elucidated, we have proposed mechanisms by which orally administered periodontopathic bacteria might induce changes in gut microbiota composition, barrier function, and immune system, resulting in an increased risk of diseases characterized by low-grade systemic inflammation. Accumulating evidence suggests a profound effect of altered gut metabolite profiles on overall host health. Therefore, it is possible that P. gingivalis can affect these metabolites. To test this, C57BL/6 mice were administered with P. gingivalis W83 orally twice a week for 5 weeks and compared with sham-inoculated mice. The gut microbial communities were analyzed by pyrosequencing the 16S rRNA genes. Inferred metagenomic analysis was used to determine the relative abundance of KEGG pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analyses. Oral administration of P. gingivalis induced a change in gut microbiota composition. The distributions of metabolic pathways differed between the two groups, including those related to amino acid metabolism and, in particular, the genes for phenylalanine, tyrosine, and tryptophan biosynthesis. Also, alanine, glutamine, histidine, tyrosine, and phenylalanine were significantly increased in the serum of P. gingivalis-administered mice. In addition to altering immune modulation and gut barrier function, oral administration of P. gingivalis affects the host's metabolic profile. This supports our hypothesis regarding a gut-mediated systemic pathology resulting from periodontal disease.IMPORTANCE Increasing evidence suggest that alterations of the gut microbiome underlie metabolic disease pathology by modulating gut metabolite profiles. We have shown that orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, alters the gut microbiome; that may be a novel mechanism by which periodontitis increases the risk of various diseases. Given the association between periodontal disease and metabolic diseases, it is possible that P. gingivalis can affect the metabolites. Metabolite profiling analysis demonstrated that several amino acids related to a risk of developing diabetes and obesity were elevated in P. gingivalis-administered mice. Our results revealed that the increased risk of various diseases by P. gingivalis might be mediated at least in part by alteration of metabolic profiles. The findings should add new insights into potential links between periodontal disease and systemic disease for investigators in periodontal disease and also for investigators in the field of other diseases, such as metabolic diseases.


Assuntos
Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Doenças Metabólicas/microbiologia , Doenças Periodontais/complicações , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/patogenicidade , Administração Oral , Animais , Fezes/microbiologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Soro/metabolismo , Estatísticas não Paramétricas
7.
BMC Complement Altern Med ; 16(1): 329, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576340

RESUMO

BACKGROUND: Periodontitis has been implicated as a risk factor for metabolic disorders associated with insulin resistance. Recently, we have demonstrated that orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, induces endotoxemia via reduced gut barrier function coupled with changes in gut microbiota composition, resulting in systemic inflammation and insulin resistance. Propolis, a resinous substance collected by honeybees from leaf buds and cracks in the bark of various plants, can positively affect metabolic disorders in various experimental models. In this study, we thus aimed to clarify the effect of propolis on impaired glucose and lipid metabolism induced by P. gingivalis administration. METHODS: Eight-week-old male C57BL/6 mice were orally administered P. gingivalis strain W83, propolis ethanol extract powder with P. gingivalis, or vehicle. We then analyzed the expression profile of glucose and lipid metabolism-related genes in the liver and adipose tissues. Serum endotoxin levels were also evaluated by a limulus amebocyte lysate test. In addition, we performed histological analysis of the liver and quantified alveolar bone loss by measuring the root surface area on the lower first molar. RESULTS: Oral administration of P. gingivalis induced downregulation of genes that improve insulin sensitivity in adipose tissue (C1qtnf9, Irs1, and Sirt1), but upregulation of genes associated with lipid droplet formation and gluconeogenesis (Plin2, Acox, and G6pc). However, concomitant administration of propolis abrogated these adverse effects of P. gingivalis. Consistent with gene expression, histological analysis showed that administered propolis suppressed hepatic steatosis induced by P. gingivalis. Furthermore, propolis inhibited the elevation of serum endotoxin levels induced by P. gingivalis administration. Contrary to the systemic effects, propolis had no beneficial effect on alveolar bone loss. CONCLUSION: These results suggest that administration of propolis may be effective in suppressing periodontopathic bacteria-induced metabolic changes that increase the risk of various systemic diseases.


Assuntos
Glicemia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Periodontite/metabolismo , Própole/farmacologia , Substâncias Protetoras/farmacologia , Perda do Osso Alveolar/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Brasil , Endotoxemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Própole/química , Substâncias Protetoras/química
8.
Antimicrob Agents Chemother ; 60(3): 1779-87, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729495

RESUMO

Sitafloxacin (STFX) is a newly developed quinolone that has robust antimicrobial activity against periodontopathic bacteria. We previously reported that oral administration of STFX during supportive periodontal therapy was as effective as conventional mechanical debridement under local anesthesia microbiologically and clinically for 3 months. The aim of the present study was to examine the short-term and long-term microbiological and clinical effects of systemic STFX and azithromycin (AZM) on active periodontal pockets during supportive periodontal therapy. Fifty-one patients receiving supportive periodontal therapy were randomly allocated to the STFX group (200 mg/day of STFX for 5 days) or the AZM group (500 mg/day of AZM for 3 days). The microbiological and clinical parameters were examined until 12 months after the systemic administration of each drug. The concentration of each drug in periodontal pockets and the antimicrobial susceptibility of clinical isolates were also analyzed. The proportions of red complex bacteria, i.e., Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, which are the representative periodontopathic bacteria, were significantly reduced at 1 month and remained lower at 12 months than those at baseline in both the STFX and AZM groups. Clinical parameters were significantly improved over the 12-month period in both groups. An increase in the MIC of AZM against clinical isolates was observed in the AZM group. These results indicate that monotherapy with systemic STFX and AZM might be an alternative treatment during supportive periodontal therapy in patients for whom invasive mechanical treatment is inappropriate. (This study has been registered with the University Hospital Medical Information Network-Clinical Trials Registry [UMIN-CTR] under registration number UMIN000007834.).


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Fluoroquinolonas/uso terapêutico , Periodontite/tratamento farmacológico , Periodonto/microbiologia , Administração Oral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bolsa Periodontal/tratamento farmacológico , Periodontite/microbiologia , Periodonto/patologia , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/isolamento & purificação , Tannerella forsythia/efeitos dos fármacos , Tannerella forsythia/isolamento & purificação , Treponema denticola/efeitos dos fármacos , Treponema denticola/isolamento & purificação
9.
PLoS One ; 10(7): e0134234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218067

RESUMO

Although periodontitis has been implicated as a risk factor for various systemic diseases, the precise mechanisms by which periodontitis induces systemic disease remain to be elucidated. We have previously revealed that repeated oral administration of Porphyromonas gingivalis elicits endotoxemia via changes in the gut microbiota of the ileum, and thereby induces systemic inflammation and insulin resistance. However, it is not clear to what extent a single administration of P. gingivalis could affect gut microbiota composition, gut barrier function, and subsequent influx of gut microbiota into the liver. Therefore, in the present study, C57BL/6 mice were orally administered P. gingivalis (strain W83) once and compared to sham-inoculated mice. The phylogenetic structure and diversity of microbial communities in the gut and liver were analyzed by pyrosequencing the 16S ribosomal RNA genes. Serum endotoxin activity was determined by a Limulus amebocyte lysate test. Gene expression in the intestine and expression of 16S rRNA genes in the blood and liver were examined by quantitative polymerase chain reaction. Administration of P. gingivalis significantly altered gut microbiota, with an increased proportion of phylum Bacteroidetes, a decreased proportion of phylum Firmicutes, and increased serum endotoxin levels. In the intestinal tissues, gene expression of tjp-1 and occludin, which are involved in intestinal permeability, were downregulated. Higher amounts of bacterial DNA were detected in the liver of infected mice. Importantly, changes in gut microbiota preceded systemic inflammatory changes. These results further support the idea that disturbance of the gut microbiota composition by orally derived periodontopathic bacteria may be a causal mechanism linking periodontitis and systemic disease.


Assuntos
Infecções por Bacteroidaceae/complicações , Disbiose/etiologia , Infecções por Enterobacteriaceae/etiologia , Microbioma Gastrointestinal , Inflamação/etiologia , Fígado/microbiologia , Porphyromonas gingivalis/fisiologia , Administração Oral , Animais , Infecções por Bacteroidaceae/microbiologia , Disbiose/metabolismo , Disbiose/patologia , Endotoxemia/etiologia , Endotoxemia/metabolismo , Endotoxemia/patologia , Enterobacteriaceae/fisiologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Fezes/microbiologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
10.
Sci Rep ; 4: 4828, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24797416

RESUMO

Periodontitis has been implicated as a risk factor for metabolic disorders such as type 2 diabetes, atherosclerotic vascular diseases, and non-alcoholic fatty liver disease. Although bacteremias from dental plaque and/or elevated circulating inflammatory cytokines emanating from the inflamed gingiva are suspected mechanisms linking periodontitis and these diseases, direct evidence is lacking. We hypothesize that disturbances of the gut microbiota by swallowed bacteria induce a metabolic endotoxemia leading metabolic disorders. To investigate this hypothesis, changes in the gut microbiota, insulin and glucose intolerance, and levels of tissue inflammation were analysed in mice after oral administration of Porphyromonas gingivalis, a representative periodontopathogens. Pyrosequencing revealed that the population belonging to Bacteroidales was significantly elevated in P. gingivalis-administered mice which coincided with increases in insulin resistance and systemic inflammation. In P. gingivalis-administered mice blood endotoxin levels tended to be higher, whereas gene expression of tight junction proteins in the ileum was significantly decreased. These results provide a new paradigm for the interrelationship between periodontitis and systemic diseases.


Assuntos
Íleo/metabolismo , Íleo/microbiologia , Inflamação/metabolismo , Inflamação/microbiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Animais , Citocinas/metabolismo , Placa Dentária/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Endotoxemia/metabolismo , Endotoxemia/microbiologia , Endotoxemia/patologia , Gengiva/metabolismo , Gengiva/microbiologia , Gengiva/patologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/microbiologia , Intolerância à Glucose/patologia , Íleo/patologia , Inflamação/patologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Doenças Metabólicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis , Proteínas de Junções Íntimas/metabolismo
11.
Arch Oral Biol ; 59(2): 93-101, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370179

RESUMO

OBJECTIVES: This study aims to clarify whether gingival fibroblasts produce periostin in response to Th2 cytokines which are elevated in periodontitis lesion and, if so, whether periostin affects the inflammatory response and matrix-protein metabolism. DESIGN: Human gingival fibroblasts, periodontal ligament cells and the gingival epithelial cell line epi4 were stimulated with interleukin-4 (IL-4), IL-13, tumour necrosis factor-α (TNF-α) and Porphyromonas gingivalis lipopolysaccharide (LPS). Periostin expression was analysed by real-time polymerase chain-reaction (PCR) and Western blotting. The expression of the IL-4 receptor α-chain was evaluated by immunocytochemistry. The effect of periostin on the production of inflammatory cytokines and the expression of matrix protein-related genes was analysed by real-time PCR and enzyme-linked immunosorbent assay (ELISA). RESULTS: While IL-4 and IL-13 significantly induced periostin production in gingival fibroblasts and periodontal ligament cells, no effect was observed in epi4 cells. No stimulatory effect of TNF-α or P. gingivalis LPS on the production of periostin was observed. The effect of periostin on the production of inflammatory cytokines was weak in gingival fibroblasts; however, little or no effect was observed on periodontal ligament cells or epi4 cells. No significant effect of periostin on the expression of matrix protein-related genes was found. CONCLUSION: The results suggest that gingival fibroblasts may be a source of periostin in periodontitis lesions but periostin has only a limited role either in the inflammatory response or in matrix-protein metabolism. Thus, the role of periostin in the cellular interaction between epithelial and mesenchymal cells in gingiva may be distinct from that of skin.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Gengiva/citologia , Ligamento Periodontal/citologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Porphyromonas gingivalis , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...