Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 73(3): 313-319, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30421982

RESUMO

Advanced gold (Au) and silver (Ag) nanostructures were produced by laser techniques on printer paper substrate. Surface-enhanced Raman spectroscopy (SERS) analyses of the fungicide mancozeb (Dithane DG) and insecticide thiamethoxam (Aktara 25 BG) in quantities smaller than usually applied in agricultural medicine were performed for the first time assisted by the structures fabricated. The investigations and results show an easy alternative and cheap way to detect small amounts or residue of harmful environmental pollutants, which has a direct bearing on food quality and thus on human health.


Assuntos
Poluentes Ambientais/análise , Fungicidas Industriais/análise , Inseticidas/análise , Maneb/análise , Análise Espectral Raman/métodos , Tiametoxam/análise , Zineb/análise , Poluentes Ambientais/química , Análise de Alimentos , Fungicidas Industriais/química , Ouro/química , Inseticidas/química , Maneb/química , Nanopartículas Metálicas/química , Prata/química , Tiametoxam/química , Zineb/química
2.
Nanomaterials (Basel) ; 8(7)2018 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-30037124

RESUMO

In this paper, we experimentally demonstrate femtosecond laser direct writing of conductive structures on the surface of native polydimethylsiloxane (PDMS). Irradiation of femtosecond laser pulses modified the PDMS to black structures, which exhibit electrical conductivity. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) results show that the black structures were composed of ß-silicon carbide (ß-SiC), which can be attributed to the pyrolysis of the PDMS. The electrical conductivity was exhibited in limited laser power and scanning speed conditions. The technique we present enables the spatially selective formation of ß-SiC on the surface of native PDMS only by irradiation of femtosecond laser pulses. Furthermore, this technique has the potential to open a novel route to simply fabricate flexible/stretchable MEMS devices with SiC microstructures.

3.
Sci Rep ; 8(1): 187, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317662

RESUMO

The integration of metal microstructures and soft materials is promising for the realization of novel optical and biomedical devices owing to the flexibility and biocompatibility of the latter. Nevertheless, the fabrication of three-dimensional metal structures within a soft material is still challenging. In this study, we demonstrate the fabrication of a silver diffraction grating inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel by using a 522-nm femtosecond laser via multi-photon photoreduction of silver ions. The optical diffraction pattern obtained with the grating showed equally spaced diffraction spots, which indicated that a regular, periodic silver grating was formed. Notably, the distance between the diffraction spots changed when the water content in the hydrogel was reduced. The grating period decreased when the hydrogel shrank owing to the loss of water, but the straight shapes of the line structures were preserved, which demonstrated the optical tunability of the fabricated structure. Our results demonstrate the potential of the femtosecond laser-based photoreduction technique for the fabrication of novel tunable optical devices as well as highly precise structures.

4.
Beilstein J Nanotechnol ; 8: 2454-2463, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234580

RESUMO

We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps - laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system) induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems embedded in transparent materials with potential applications in the design of new optical components, such as metamaterials and in plasmonics.

5.
Opt Lett ; 41(7): 1392-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192244

RESUMO

The fabrication of three-dimensional (3D) metal microstructures in a synthetic polymer-based hydrogel is demonstrated by femtosecond laser-induced photoreduction. The linear-shaped silver structure of approximately 2 micrometers in diameter is fabricated inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel. The silver structure is observed and confirmed by scanning electron microscopy (SEM) and elemental analysis using energy-dispersive X-ray spectroscopy (EDX). Shrinking and swelling of the fabricated structure is also demonstrated experimentally, which shows the potential of the present method for realizing 3D flexible electronic and optical devices, as well as for fabricating highly integrated devices at submicron scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...