Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114052, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573860

RESUMO

Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.


Assuntos
Diferenciação Celular , Hipertrofia , Macrófagos , Células-Tronco Mesenquimais , Camundongos Knockout , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Granulinas , Comunicação Celular , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Regeneração
2.
STAR Protoc ; 3(2): 101307, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35463471

RESUMO

Muscle satellite cells (MuSCs) supply nuclei to existing myofibers in response to mechanical loading. This myonuclear accretion is critical for efficient muscle hypertrophy. Herein, we present protocols for the detection of MuSC-derived new myonuclei in loaded mouse muscle, including procedures for EdU injection to stain myonuclei, followed by surgery and skeletal muscle fixation. We then describe immunostaining for EdU+ myonuclei and image acquisition for quantitative analyses. For complete details on the use and execution of this protocol, please refer to Kaneshige et al. (2022).


Assuntos
Células Satélites de Músculo Esquelético , Animais , Núcleo Celular , Camundongos , Músculo Esquelético
3.
Cell Stem Cell ; 29(2): 265-280.e6, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856120

RESUMO

Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.


Assuntos
Antígeno CD47 , Mioblastos , Animais , Antígeno CD47/metabolismo , Hipertrofia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Células-Tronco/metabolismo
4.
Endocrinol Metab (Seoul) ; 36(4): 737-744, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34372625

RESUMO

Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.


Assuntos
Treinamento Resistido , Humanos , Músculo Esquelético , Células-Tronco
5.
Stem Cells ; 39(3): 306-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295098

RESUMO

Muscle stem cells, also called muscle satellite cells (MuSCs), are responsible for skeletal muscle regeneration and are sustained in an undifferentiated and quiescent state under steady conditions. The calcitonin receptor (CalcR)-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis is one pathway that maintains quiescence in MuSCs. Although CalcR signaling in MuSCs has been identified, the critical CalcR signaling targets are incompletely understood. Here, we show the relevance between the ectopic expression of delta-like non-canonical Notch ligand 1 (Dlk1) and the impaired quiescent state in CalcR-conditional knockout (cKO) MuSCs. Dlk1 expression was rarely detected in both quiescent and proliferating MuSCs in control mice, whereas Dlk1 expression was remarkably increased in CalcR-cKO MuSCs at both the mRNA and protein levels. It is noteworthy that all Ki67+ non-quiescent CalcR-cKO MuSCs express Dlk1, and non-quiescent CalcR-cKO MuSCs are enriched in the Dlk1+ fraction by cell sorting. Using mutant mice, we demonstrated that PKA-activation or Yap1-depletion suppressed Dlk1 expression in CalcR-cKO MuSCs, which suggests that the CalcR-PKA-Yap1 axis inhibits the expression of Dlk1 in quiescent MuSCs. Moreover, the loss of Dlk1 rescued the quiescent state in CalcR-cKO MuSCs, which indicates that the ectopic expression of Dlk1 disturbs quiescence in CalcR-cKO. Collectively, our results suggest that ectopically expressed Dlk1 is responsible for the impaired quiescence in CalcR-cKO MuSCs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Músculo Esquelético/metabolismo , Receptores da Calcitonina/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco/metabolismo
6.
PLoS One ; 14(1): e0210193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629639

RESUMO

The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.


Assuntos
Antígenos CD57/imunologia , Contactina 1/fisiologia , Hipocampo/crescimento & desenvolvimento , Crescimento Neuronal/imunologia , Tenascina/imunologia , Processamento Alternativo/imunologia , Animais , Embrião de Mamíferos , Epitopos/imunologia , Domínio de Fibronectina Tipo III/genética , Domínio de Fibronectina Tipo III/imunologia , Glucuronosiltransferase/genética , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/fisiologia , Crescimento Neuronal/genética , Cultura Primária de Células , Tenascina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...