Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 686: 149179, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37922572

RESUMO

Direct delivery of genome-editing proteins into plant tissues could be useful in obtaining DNA-free genome-edited crops obviating the need for backcrossing to remove vector-derived DNA from the host genome as in the case of genetically modified organisms generated using DNA vector. Previously, we successfully delivered Cas9 ribonucleoprotein (RNP) into plant tissue by inserting microneedle array (MNA) physisorbed with Cas9 RNPs. Here, to enhance protein delivery and improve genome-editing efficiency, we introduced a bioactive polymer DMA/HPA/NHS modification to the MNA, which allowed strong bonding between the proteins and MNA. Compared with other modifying agents, this MNA modification resulted in better release of immobilized protein in a plant cytosol-mimicking environment. The delivery of Cas9 RNPs in Arabidopsis thaliana reporter plants was improved from 4 out of 17 leaf tissues when using unmodified MNAs to 9 out of 17 when using the polymer-modified MNAs. Further improvements in delivery efficiency can be envisaged by optimizing the polymer modification conditions, which could have significant implications for the development of more effective plant genome editing techniques.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Citosol/metabolismo , Preparações de Ação Retardada , DNA , Genoma de Planta/genética
3.
STAR Protoc ; 4(3): 102468, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481726

RESUMO

Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2.


Assuntos
Nanotecnologia , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Membrana Celular/química
4.
Biosens Bioelectron ; 216: 114603, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964349

RESUMO

Intermediate filaments (IF) bind to various proteins and regulate cell function in the cytoplasm. Recently, IFs were found to regulate gene expression by acting as capture scaffolds for transcription-related proteins and preventing their translocation into the nucleus. To reveal such transcriptional regulatory mechanisms controlled by IFs, a method to analyze the interaction between IFs and transcription-related proteins is necessary. Although there are many methods to observe interactions in living cells, it is still challenging to measure protein-protein interactions in living cells in their unmodified and native state. In this study, we utilized a nanoneedle that can access the cytosol by insertion into the cell. Modification of antibody recognizing transcription-related proteins allows the needle to detect mechanical force required to unbind the interaction between antibody and target proteins interacting with IFs during retraction of the needle from the cell. We focused on IF vimentin, a marker of epithelial-mesenchymal transition, to mechanically detect transcription-related proteins trapped by vimentin filaments. Prohibitin 2 (PHB2), a transcription-related factor, was selected as the candidate vimentin-binding protein. We conducted mechanical detection of PHB2 using atomic force microscopy and anti-PHB2 antibody-modified nanoneedles in vimentin-expressing mouse breast cancer and vimentin-knockout (VKO) cells. Significantly larger unbinding forces were detected in the vimentin-expressing cells than in the VKO cells. The results demonstrate that this method is useful for in-cell mechanical detection of IF-binding proteins.


Assuntos
Técnicas Biossensoriais , Filamentos Intermediários , Animais , Citoplasma , Filamentos Intermediários/metabolismo , Camundongos , Microscopia de Força Atômica/métodos , Vimentina/genética , Vimentina/metabolismo
5.
Front Plant Sci ; 13: 878059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812975

RESUMO

Genome editing in plants employing recombinant DNA often results in the incorporation of foreign DNA into the host genome. The direct delivery of genome-editing proteins into plant tissues is desired to prevent undesirable genetic alterations. However, in most currently available methods, the point of entry of the genome-editing proteins cannot be controlled and time-consuming processes are required to select the successfully transferred samples. To overcome these limitations, we considered a novel microneedle array (MNA)-based delivery system, in which the needles are horizontally aligned from the substrate surface, giving it a comb-like configuration. We aimed to deliver genome-editing proteins directly into the inner layers of leaf tissues; palisade, the spongy and subepidermal L2 layers of the shoot apical meristem (SAM) which include cells that can differentiate into germlines. The array with needles 2 µm wide and 60 µm long was effective in inserting into Arabidopsis thaliana leaves and Glycine max (L.) Merr. (soybeans) SAM without the needles buckling or breaking. The setup was initially tested for the delivery of Cre recombinase into the leaves of the reporter plant A. thaliana by quantifying the GUS (ß-glucuronidase) expression that occurred by the recombination of the loxP sites. We observed GUS expression at every insertion. Additionally, direct delivery of Cas9 ribonucleoprotein (RNP) targeting the PDS11/18 gene in soybean SAM showed an 11 bp deletion in the Cas9 RNP target site. Therefore, this method effectively delivered genome-editing proteins into plant tissues with precise control over the point of entry.

6.
Genes Cells ; 27(5): 317-330, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194888

RESUMO

Actin is a major structural component of the cytoskeleton in eukaryotic cells, including fungi, plants, and animals, and exists not only in the cytoplasm as cytoskeleton but also in the nucleus. Recently, we developed a novel actin probe, ß-actin-EGFP fusion protein, which exhibited similar monomeric to filamentous ratio as that of endogenous actin, in contrast to the widely used EGFP-ß-actin fusion protein that over-assembles in cells. Unexpectedly, this novel probe visualized an interconnected meshwork of slightly curved beam-like bundles of actin filaments in the nucleus of U2OS cells. These structures were not labeled with rhodamine phalloidin, Lifeact-EGFP or anti-actin antibodies. In addition, immunofluorescence staining and expression of cofilin-EGFP revealed that this nuclear actin structures contained cofilin. We named these actin filaments as phalloidin-negative intranuclear (PHANIN) actin filaments. Since PHANIN actin filaments could not be detected by general detection methods for actin filaments, we propose that PHANIN actin filaments are different from previously reported nuclear actin structures.


Assuntos
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Faloidina/análise , Faloidina/metabolismo
7.
J Biosci Bioeng ; 133(3): 195-207, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998688

RESUMO

Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/prevenção & controle , Membrana Celular , Ouro , Humanos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
8.
Sci Adv ; 7(52): eabj4990, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936434

RESUMO

Atomic force microscopy (AFM) is the only technique that allows label-free imaging of nanoscale biomolecular dynamics, playing a crucial role in solving biological questions that cannot be addressed by other major bioimaging tools (fluorescence or electron microscopy). However, such imaging is possible only for systems either extracted from cells or reconstructed on solid substrates. Thus, nanodynamics inside living cells largely remain inaccessible with the current nanoimaging techniques. Here, we overcome this limitation by nanoendoscopy-AFM, where a needle-like nanoprobe is inserted into a living cell, presenting actin fiber three-dimensional (3D) maps, and 2D nanodynamics of the membrane inner scaffold, resulting in undetectable changes in cell viability. Unlike previous AFM methods, the nanoprobe directly accesses the target intracellular components, exploiting all the AFM capabilities, such as high-resolution imaging, nanomechanical mapping, and molecular recognition. These features should greatly expand the range of intracellular structures observable in living cells.

9.
Anal Chem ; 93(26): 9032-9035, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152726

RESUMO

Chloride channels regulate cell volume by an efflux of chloride ions in response to osmotic stresses. These have been shown to play a role in cancer invasion. However, their function in cancer metastasis remains unclear. As the internal environment of the human body is rarely exposed to osmotic stress, we presumed that Cl- efflux in cancer cells is induced by mechanical stress caused by their crowded environment and invasion of their narrow interstitial spaces. In this study, we recruited atomic force microscopy to apply mechanical stress to mouse or human breast cancer cells with varying degrees of malignancy and examined their Cl- efflux by N-ethoxycarbonylmethyl-6-methoxyquinolinium bromide (MQAE), which is quenched via collision with Cl- ions. We found that intracellular MQAE fluorescence intensity increased immediately after cell compression, demonstrating induction of Cl- efflux by mechanical force. Furthermore, Cl- efflux ability showed correlation with the cancer metastatic potential. These results suggested that mechanical stress induced Cl- efflux may serve as a potential reporter for estimating the invasion ability of cancer cells.


Assuntos
Cloretos , Neoplasias , Animais , Linhagem Celular , Tamanho Celular , Camundongos , Pressão Osmótica
10.
Sci Rep ; 11(1): 7756, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833307

RESUMO

Over the last decade, nanoneedle-based systems have demonstrated to be extremely useful in cell biology. They can be used as nanotools for drug delivery, biosensing or biomolecular recognition inside cells; or they can be employed to select and sort in parallel a large number of living cells. When using these nanoprobes, the most important requirement is to minimize the cell damage, reducing the forces and indentation lengths needed to penetrate the cell membrane. This is normally achieved by reducing the diameter of the nanoneedles. However, several studies have shown that nanoneedles with a flat tip display lower penetration forces and indentation lengths. In this work, we have tested different nanoneedle shapes and diameters to reduce the force and the indentation length needed to penetrate the cell membrane, demonstrating that ultra-thin and sharp nanoprobes can further reduce them, consequently minimizing the cell damage.


Assuntos
Microscopia de Força Atômica/métodos , Nanotecnologia , Agulhas , Separação Celular
11.
Sensors (Basel) ; 20(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050090

RESUMO

The influence of nivolumab on intercellular adhesion forces between T cells and cancer cells was evaluated quantitatively using atomic force microscopy (AFM). Two model T cells, one expressing high levels of programmed cell death protein 1 (PD-1) (PD-1high Jurkat) and the other with low PD-1 expression levels (PD-1low Jurkat), were analyzed. In addition, two model cancer cells, one expressing programmed death-ligand 1 (PD-L1) on the cell surface (PC-9, PD-L1+) and the other without PD-L1 (MCF-7, PD-L1-), were also used. A T cell was attached to the apex of the AFM cantilever using a cup-attached AFM chip, and the intercellular adhesion forces were measured. Although PD-1high T cells adhered strongly to PD-L1+ cancer cells, the adhesion force was smaller than that with PD-L1- cancer cells. After the treatment of PD-1high T cells with nivolumab, the adhesion force with PD-L1+ cancer cells increased to a similar level as with PD-L1- cancer cells. These results can be explained by nivolumab influencing the upregulation of the adhesion ability of PD-1high T cells with PD-L1+ cancer cells. These results were obtained by measuring intercellular adhesion forces quantitatively, indicating the usefulness of single-cell AFM analysis.


Assuntos
Adesão Celular/efeitos dos fármacos , Microscopia de Força Atômica , Nivolumabe/farmacologia , Linfócitos T/citologia , Antígeno B7-H1 , Humanos , Células Jurkat , Células MCF-7 , Receptor de Morte Celular Programada 1 , Análise Espectral
12.
Anal Methods ; 12(22): 2922-2927, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32930215

RESUMO

A universal method to measure the binding affinities of antibody drugs towards their targets on the surface of living cells was developed based on atomic force microscopy (AFM) analysis. Nivolumab, an antibody drug targeting programmed cell death 1 (PD-1), was mainly used as a model for this evaluation. The surface of a tip-less AFM cantilever was coated with nano-capsules, on which immunoglobulin G-binding ZZ domains of protein A were exposed, and nivolumab molecules were immobilized on the cantilever through binding between the antibody Fc domains and the ZZ domains, which controlled the molecular orientation of the antibodies. Model human T lymphocytes (Jurkat), on which PD-1 molecules were highly expressed, were immobilized on a glass substrate via a lipid bilayer-anchoring reagent. The nivolumab-coated AFM cantilever was moved to approach the T cells, and the rupture forces between nivolumab molecules on the AFM cantilever and PD-1 molecules on the cell surface were measured. The average values of the rupture forces were 0.18 ± 0.10, 0.21 ± 0.18, 0.12 ± 0.07, 0.11 ± 0.06, and 0.12 ± 0.06 nN µm-2 at loading forces of 10, 20, 30, 40, and 50 nN, respectively. Application of significantly higher loading forces decreased the S/N ratio, as confirmed by comparison with control T cells with low PD-1 expression, which suggested that a low loading force of less than 20 nN was sufficient for these measurements. A correlation between the expression levels of PD-1 and the rupture force values was confirmed using immunofluorescence. A similar assay was performed by using an antibody drug targeting epidermal growth factor receptor (EGFR) and a model cancer cell expressing EGFR molecules (A431) to evaluate the universal application of the developed method for various antibody drugs, and the same conclusions as that in nivolumab's case were obtained. This method can be applied to living cells without any chemical treatment, which allows the present method to compare the affinities of various antibody drugs towards the same single cell. These results indicated that the present method is useful for selecting the most effective candidates from various antibody drugs from the point of view of binding forces between antibodies and living cells.


Assuntos
Anticorpos , Preparações Farmacêuticas , Humanos , Microscopia de Força Atômica , Nivolumabe , Análise Espectral
13.
Micromachines (Basel) ; 10(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671643

RESUMO

The contribution of secretions from tumor-associated macrophage (TAM)-like cells to the stimulation of mechanical property changes in murine breast cancer cells was studied using an in vitro model system. A murine breast cancer cell line (FP10SC2) was stimulated by adding macrophage (J774.2) cultivation medium containing stimulation molecules secreted from the macrophages, and changes in mechanical properties were compared before and after stimulation. As a result, cell elasticity decreased, degradation ability of the extracellular matrix increased, and the expression of plakoglobin was upregulated. These results indicate that cancer cell malignancy is upregulated by this stimulation. Moreover, changes in intercellular adhesion strengths between pairs of cancer cells were measured before and after stimulation using atomic force microscopy (AFM). The maximum force required to separate cells was increased by stimulation with the secreted factors. These results indicate the possibility that TAMs cause changes in the mechanical properties of cancer cells in tumor microenvironments, and in vitro measurements of mechanical property changes in cancer cells will be useful to study interactions between cells in tumor microenvironments.

14.
Anal Chem ; 91(16): 10557-10563, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31322341

RESUMO

Intercellular adhesion strengths between two kinds of murine breast cancer cells with different malignancies were measured quantitatively using a metal cup-attached chip with atomic force microscopy (AFM). The cup-attached chip was used to approach a cell, pick it up, and then approach another cell, and the adhesion strengths were measured according to the contact time of the cells between 0 to 60 s. Separation work was used as a parameter for quantitative comparisons of the strengths. As a result, the work of a highly metastatic cancer cell (FP10SC2) was greater than a low metastatic cancer cell (4T1-LM) throughout all contact times examined. Adhesion was analyzed from a point of a view of binding kinetics of receptors on cells, and two possibilities were found: one was the number of cell adhesive receptors increased, and the other was the work to separate single molecular binding increased with increasing cancer cell malignancy. These results indicated quantitative measurements of intercellular adhesion strengths using AFM yielded information to understand the mechanism of the cancer progression from a new perspective.


Assuntos
Neoplasias da Mama/química , Receptores de Superfície Celular/química , Neoplasias da Mama/diagnóstico , Adesão Celular , Linhagem Celular Tumoral , Humanos , Cinética , Microscopia de Força Atômica
15.
Int J Biol Sci ; 15(7): 1546-1556, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31337983

RESUMO

Intermediate filaments play significant roles in governing cell stiffness and invasive ability. Nestin is a type VI intermediate filament protein that is highly expressed in several high-metastatic cancer cells. Although inhibition of nestin expression was shown to reduce the metastatic capacity of tumor cells, the relationship between this protein and the mechanism of cancer cell metastasis remains unclear. Here, we show that nestin softens the cell body of the highly metastatic mouse breast cancer cell line FP10SC2, thereby enhancing the metastasis capacity. Proximity ligation assay demonstrated increased binding between actin and vimentin in nestin knockout cells. Because nestin copolymerizes with vimentin and nestin has an extremely long tail domain in its C-terminal region, we hypothesized that the tail domain functions as a steric inhibitor of the vimentin-actin interaction and suppresses association of vimentin filaments with the cortical actin cytoskeleton, leading to reduced cell stiffness. To demonstrate this function, we mechanically pulled vimentin filaments in living cells using a nanoneedle modified with vimentin-specific antibodies under manipulation by atomic force microscopy (AFM). The tensile test revealed that mobility of vimentin filaments was increased by nestin expression in FP10SC2 cells.


Assuntos
Actinas/química , Metástase Neoplásica/patologia , Nestina/fisiologia , Vimentina/química , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quimiotaxia , Citoesqueleto/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Invasividade Neoplásica , Nestina/química , Domínios Proteicos , Análise de Sequência de RNA , Estresse Mecânico
16.
Sci Rep ; 9(1): 2163, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770845

RESUMO

Genome engineering in plants is highly dependent on the availability of effective molecular techniques. Despite vast quantities of research, genome engineering in plants is still limited in terms of gene delivery, which requires the use of infectious bacteria or harsh conditions owing to the difficulty delivering biomaterial into plant cells through the cell wall. Here, we describe a method that uses electroporation-mediated protein delivery into cultured Arabidopsis thaliana cells possessing an intact cell wall, and demonstrate Cre-mediated site-specific recombination. By optimizing conditions for the electric pulse, protein concentration, and electroporation buffer, we were able to achieve efficient and less-toxic protein delivery into Arabidopsis thaliana cells with 83% efficiency despite the cell wall. To the best of our knowledge, this is the first report demonstrating the electroporation-mediated protein delivery of Cre recombinase to achieve nucleic acid-free genome engineering in plant cells possessing an intact cell wall.


Assuntos
Arabidopsis/efeitos da radiação , Parede Celular/efeitos da radiação , Eletroporação/métodos , Endocitose , Integrases/metabolismo , Células Vegetais/efeitos da radiação , Transporte Proteico , Arabidopsis/metabolismo , Parede Celular/metabolismo , Células Vegetais/metabolismo
17.
Plasmid ; 98: 37-44, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30196057

RESUMO

The CRISPR/Cas9 system is a powerful genome editing tool for disrupting the expression of specific genes in a variety of cells. However, the genome editing procedure using currently available vectors is laborious, and there is room for improvement to obtain knockout cells more efficiently. Therefore, we constructed a novel vector for high efficiency genome editing, named pGedit, which contains EGFP-Bsr as a selection marker, expression units of Cas9, and sgRNA without a terminator sequence of the U6 promoter. EGFP-Bsr is a fusion protein of EGFP and blasticidin S deaminase, and enables rapid selection and monitoring of transformants, as well as confirmation that the vector has not been integrated into the genome. By using pGedit, we targeted human ACTB, ACTG1 and mouse Nes genes coding for ß-actin, γ-actin and nestin, respectively. Knockout cell lines of each gene were easily and efficiently obtained in all three cases. In this report, we show that our novel vector, pGedit, significantly facilitates genome editing.


Assuntos
Actinas/antagonistas & inibidores , Sistemas CRISPR-Cas , Edição de Genes/métodos , Vetores Genéticos , Nestina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Actinas/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Animais , Sequência de Bases , Marcação de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Nestina/genética , Regiões Promotoras Genéticas , Homologia de Sequência
18.
Methods Mol Biol ; 1867: 165-174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155822

RESUMO

Genome editing with site-specific nucleases (SSNs) may be effective for gene therapy, as SSNs can modify target genes. However, the main limitation of genome editing for clinical use is off-target effects by excess amounts of SSNs within cells. Therefore, a controlled delivery system for SSNs is necessary. Previously we have reported on a zinc finger nuclease (ZFN) delivery system, which combined DNA aptamers against FokI nuclease domain (FokI) and nanoneedles. Here, we describe how DNA aptamers against FokI were selected and characterized for genome editing applications.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Desoxirribonucleases de Sítio Específico do Tipo II/antagonistas & inibidores , Edição de Genes/métodos , Nucleases de Dedos de Zinco/química , Terapia Genética , Genoma Humano , Células HEK293 , Humanos
19.
Nano Lett ; 17(11): 7117-7124, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29047282

RESUMO

Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.


Assuntos
Anticorpos Imobilizados/química , Separação Celular/instrumentação , Nanoestruturas/química , Agulhas , Animais , Linhagem Celular , Desenho de Equipamento , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células MCF-7 , Camundongos , Células NIH 3T3 , Nanoestruturas/ultraestrutura , Células-Tronco Neurais/citologia , Análise Serial de Tecidos/instrumentação
20.
Cell Struct Funct ; 42(2): 131-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855440

RESUMO

Actin, a major component of microfilaments, is involved in various eukaryotic cellular functions. Over the past two decades, actin fused with fluorescent protein has been used as a probe to detect the organization and dynamics of the actin cytoskeleton in living eukaryotic cells. It is generally assumed that the expression of fusion protein of fluorescent protein does not disturb the distribution of endogenous actin throughout the cell, and that the distribution of the fusion protein reflects that of endogenous actin. However, we noticed that EGFP-ß-actin caused the excessive formation of microfilaments in several mammalian cell lines. To investigate whether the position of the EGFP tag on actin affected the formation of filaments, we constructed an expression vector harboring a ß-actin-EGFP gene. In contrast to EGFP-ß-actin, cells expressing ß-actin-EGFP showed actin filaments in a high background from the monomer actin in cytosol. Additionally, the detergent insoluble assay revealed that the majority of the detergent-insoluble cytoskeleton from cells expressing EGFP-ß-actin was recovered in the pellet. Furthermore, we found that the expression of EGFP-ß-actin affects the migration of NBT-L2b cells and the mechanical stiffness of U2OS cells. These results indicate that EGFP fused to the N-terminus of actin tend to form excessive actin filaments. In addition, EGFP-actin affects both the cellular morphological and physiological phenotypes as compared to actin-EGFP.Key words: actin, GFP, cytoskeleton and probe.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Citoesqueleto de Actina/química , Actinas/análise , Actinas/química , Animais , Linhagem Celular , Citosol/química , Citosol/metabolismo , Proteínas de Fluorescência Verde/análise , Humanos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...