Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Med Sci ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010217

RESUMO

The bear roundworm Baylisascaris transfuga has been identified in several host bears (Ursinae). However, limited genetic information is available on the bear roundworm in Japanese populations. This study evaluated the genetic composition of bear roundworms isolated from wild Japanese black bears indigenous to Lake Towada, Japan. First, we conducted genetic and/or molecular phylogenetic analyses based on cytochrome c oxidase subunit II and internal transcribed spacer 2 among Baylisascaris species. These analyses revealed that the identified roundworms were genetically B. transfuga. In addition, the average body size of the obtained roundworms in this study was almost the same as that previously reported for B. transfuga. This study represents an important step in genetic research on the roundworm B. transfuga in Ursinae bears not only from Japan but also from the rest of the world.

2.
Parasit Vectors ; 17(1): 304, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003498

RESUMO

BACKGROUND: Malaria, a global health concern, is caused by parasites of the Plasmodium genus, which undergo gametogenesis in the midgut of mosquitoes after ingestion of an infected blood meal. The resulting male and female gametes fuse to form a zygote, which differentiates into a motile ookinete. After traversing the midgut epithelium, the ookinete differentiates into an oocyst on the basal side of the epithelium. METHODS: Membrane proteins with increased gene expression levels from the gamete to oocyst stages in P. berghei were investigated utilizing PlasmoDB, the functional genomic database for Plasmodium spp. Based on this analysis, we selected the 184-kDa membrane protein, Pb184, for further study. The expression of Pb184 was further confirmed through immunofluorescence staining, following which we examined whether Pb184 is involved in fertilization using antibodies targeting the C-terminal region of Pb184 and biotin-labeled C-terminal region peptides of Pb184. RESULTS: Pb184 is expressed on the surface of male and female gametes. The antibody inhibited zygote and ookinete formation in vitro. When mosquitoes were fed on parasite-infected blood containing the antibody, oocyst formation decreased on the second day after feeding. Synthesized biotin-labeled peptides matching the C-terminal region of Pb184 bound to the female gamete and the residual body of male gametes, and inhibited differentiation into ookinetes in the in vitro culture system. CONCLUSIONS: These results may be useful for the further studying the fertilization mechanism of Plasmodium protozoa. There is also the potential for their application as future tools to prevent malaria transmission.


Assuntos
Fertilização , Plasmodium berghei , Proteínas de Protozoários , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animais , Feminino , Masculino , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Camundongos , Células Germinativas/metabolismo , Malária/parasitologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Zigoto/metabolismo , Anopheles/parasitologia , Anopheles/metabolismo , Oocistos/metabolismo , Gametogênese/genética
3.
J Vet Med Sci ; 86(5): 485-492, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569883

RESUMO

Plasmodium parasites within mosquitoes are exposed to various physiological processes, such as blood meal digestion activity, the gonotrophic cycle, and host responses preventing the entry of parasites into the midgut wall. However, when in vitro-cultured ookinetes are injected into the hemocoel of mosquitoes, Plasmodium parasites are not affected by the vertebrate host's blood contents and do not pass through the midgut epithelial cells. This infection method might aid in identifying mosquito-derived factors affecting Plasmodium development within mosquitoes. This study investigated novel mosquito-derived molecules related to parasite development in Anopheles mosquitoes. We injected in vitro-cultured Plasmodium berghei (ANKA strain) ookinetes into female and male Anopheles stephensi (STE2 strain) mosquitoes and found that the oocyst number was significantly higher in males than in females, suggesting that male mosquitoes better support the development of parasites. Next, RNA-seq analysis was performed on the injected female and male mosquitoes to identify genes exhibiting changes in expression. Five genes with different expression patterns between sexes and greatest expression changes were identified as being potentially associated with Plasmodium infection. Two of the five genes also showed expression changes with infection by blood-feeding, indicating that these genes could affect the development of Plasmodium parasites in mosquitoes.


Assuntos
Anopheles , Plasmodium berghei , Animais , Anopheles/parasitologia , Feminino , Masculino , Plasmodium berghei/fisiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Camundongos , Interações Hospedeiro-Parasita
4.
Parasitol Int ; 97: 102793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562581

RESUMO

Philopinna higai is a species of Didymozoidae (Digenea: Hemiuroidea). The definitive hosts of this parasite only belong to the fish genus Sarcocheilichthys. Sarcocheilichthys fishes are endemic to Lake Biwa and southwestern Japan and were introduced into the northeastern (Tohoku) region. However, P. higai parasitism has not been investigated in the Tohoku region. In this study, we surveyed the distribution of P. higai in the Tohoku region and sequenced 28S rDNA (994 bp) and cytochrome oxidase subunit 1 (CO1) gene (721 bp) of P. higai. We also sequenced mitochondrial cytochrome b (581 bp) of Sarcocheilichthys fishes from the Tohoku region and Lake Biwa. Our findings confirmed the distribution of P. higai in all seven surveyed river systems in the four prefectures of the Tohoku region. The 28S rDNA sequence of P. higai did not differ among regions, whereas 10 haplotypes of CO1 were identified and clustered into two major clades. The haplotypes of Sarcocheilichthys fishes introduced in the Tohoku region were identical to the dominant haplotypes in Lake Biwa. Thus, P. higai from Lake Biwa and the Tohoku region were genetically the same species, although genetically differentiated populations formed in the Tohoku region.


Assuntos
Cipriniformes , Trematódeos , Animais , Japão/epidemiologia , Trematódeos/genética , Peixes/parasitologia , Rios , DNA Ribossômico/genética , Filogenia
5.
J Vet Med Sci ; 85(9): 921-928, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37407494

RESUMO

Malaria needs new strategies for its control. Plasmodium spp., the causative agent of malaria, is transmitted by mosquitoes. These parasites develop into oocysts and sporozoites in the body of the mosquitoes. A deeper understanding of oocysts that produce the infectious form of the parasite, sporozoites, can facilitate the development of novel countermeasures. However, the isolation of Plasmodium oocysts is challenging as these are formed between midgut epithelial cells and basal lamina after gametocytes enter the mosquito's body through blood feeding. Further research on oocysts has been impeded by issues related to oocyst isolation. Therefore, in this study, we injected Plasmodium into mosquitoes-an artificial and unique method-and aimed to clarify how oocysts were formed in mosquitoes after Plasmodium injection and whether free oocysts were formed from the mosquito tissue. Plasmodium berghei (ANKA strain) ookinetes cultured in vitro were injected into the thoracic body cavity (hemocoel) of female and male Anopheles stephensi mosquitoes. Oocysts were formed in the body of female and male mosquitoes at 14 days post injection. In addition, oocysts formed as a result of injection developed into sporozoites, which were infectious to mice. These findings suggest that P. berghei can complete its developmental stage in mosquitoes by injection. Some of the oocysts formed were free from mosquito tissue, and it was possible to collect oocysts with minimal contamination of mosquito tissue. These free oocysts can be used for investigating oocyst proteins and metabolism.


Assuntos
Anopheles , Malária , Masculino , Feminino , Animais , Camundongos , Oocistos , Anopheles/metabolismo , Anopheles/parasitologia , Malária/veterinária , Plasmodium berghei
6.
Parasitol Int ; 93: 102711, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36414198

RESUMO

Crithidia mellificae (C. mellificae) and Lotmaria passim (L. passim) are trypanosomatids that infect Apis mellifera. We analyzed the prevalence of C. mellificae and L. passim in six regions of Japan from 2018 to 2019. The detection rate of C. mellificae was 0.0% in all regions, whereas L. passim was detected in 16.7%-66.7% of the honeybees. L. passim was detected at a significantly lower rate in the Cyugoku-Shikoku region than in other regions. Furthermore, phylogenetic analysis of the internal transcribed spacer 1 (ITS1) locus of related species was performed. All the samples in this study could be assigned to the L. passim clade. This study reveals that L. passim infection is predominantly prevalent in Japan. Further epidemiological surveys are needed to clarify the prevalence of C. mellificae infection in honeybees in Japan.


Assuntos
Trypanosomatina , Abelhas , Animais , Japão/epidemiologia , Filogenia , Crithidia
7.
J Vet Med Sci ; 84(7): 1015-1018, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644573

RESUMO

Trichodectes pinguis, referred to commonly as the bear-biting louse, has been reported in several bear species. However, graphical (blurred or coarse) and genetic information on the louse is limited. In this study, we identified T. pinguis collected from Japanese black bears in the Aomori Prefecture, Japan. We confirmed 12S rDNA sequences derived from the collected T. pinguis and performed molecular phylogenetic analysis based on 12S rDNA. The analysis revealed the parasitic louse to be T. pinguis. Interestingly, the body size of T. pinguis found in this study was smaller than the previous recorded body size of them in Japan and Turkey. To better understand the biting louse infesting bears, morphometric and genetic information from other bear hosts needs to be accumulated.


Assuntos
Ursidae , Animais , DNA Ribossômico , Japão , Filogenia , Turquia , Ursidae/genética , Ursidae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA