Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(19): 5288-5294, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38722699

RESUMO

Diffusion in solids is a slow process that dictates rate-limiting processes in key chemical reactions. Unlike crystalline solids that offer well-defined diffusion pathways, the lack of similar structural motifs in amorphous or glassy materials poses great challenges in bridging the slow diffusion process and material failures. To tackle this problem, we propose an AI-guided long-term atomistic simulation approach: molecular autonomous pathfinder (MAP) framework based on deep reinforcement learning (DRL), where the RL agent is trained to uncover energy efficient diffusion pathways. We employ a Deep Q-Network architecture with distributed prioritized replay buffer, enabling fully online agent training with accelerated experience sampling by an ensemble of asynchronous agents. After training, the agents provide atomistic configurations of diffusion pathways with their energy profile. We use a piecewise nudged elastic band to refine the energy profile of the obtained pathway and the corresponding diffusion time on the basis of transition-state theory. With the MAP framework, we demonstrate atomistic diffusion mechanisms in amorphous silica with time scales comparable to experiments.

2.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38568947

RESUMO

Structural and vibrational properties of aqueous solutions of alkali hydroxides (LiOH, NaOH, and KOH) are computed using quantum molecular dynamics simulations for solute concentrations ranging between 1 and 10M. Element-resolved partial radial distribution functions, neutron and x-ray structure factors, and angular distribution functions are computed for the three hydroxide solutions as a function of concentration. The vibrational spectra and frequency-dependent conductivity are computed from the Fourier transforms of velocity autocorrelation and current autocorrelation functions. Our results for the structure are validated with the available neutron data for 17M concentration of NaOH in water [Semrouni et al., Phys. Chem. Chem. Phys. 21, 6828 (2019)]. We found that the larger ionic radius [rLi+

3.
Nat Commun ; 15(1): 3479, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658556

RESUMO

The Normal Mode Analysis (NMA) is a standard approach to elucidate the anisotropic vibrations of macromolecules at their folded states, where low-frequency collective motions can reveal rearrangements of domains and changes in the exposed surface of macromolecules. Recent advances in structural biology have enabled the resolution of megascale macromolecules with millions of atoms. However, the calculation of their vibrational modes remains elusive due to the prohibitive cost associated with constructing and diagonalizing the underlying eigenproblem and the current approaches to NMA are not readily adaptable for efficient parallel computing on graphic processing unit (GPU). Here, we present eigenproblem construction and diagonalization approach that implements level-structure bandwidth-reducing algorithms to transform the sparse computation in NMA to a globally-sparse-yet-locally-dense computation, allowing batched tensor products to be most efficiently executed on GPU. We map, optimize, and compare several low-complexity Krylov-subspace eigensolvers, supplemented by techniques such as Chebyshev filtering, sum decomposition, external explicit deflation and shift-and-inverse, to allow fast GPU-resident calculations. The method allows accurate calculation of the first 1000 vibrational modes of some largest structures in PDB ( > 2.4 million atoms) at least 250 times faster than existing methods.

4.
J Phys Chem Lett ; 15(6): 1579-1583, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38302442

RESUMO

Surface transfer doping is proposed to be a potential solution for doping diamond, which is hard to dope for applications in high-power electronics. While MoO3 is found to be an effective surface electron acceptor for hydrogen-terminated diamond with a negative electron affinity, the effects of commonly existing oxygen vacancies remain elusive. We have performed reactive molecular dynamics simulations to study the deposition of MoO3-x on a hydrogenated diamond (111) surface and used first-principles calculations based on density functional theory to investigate the electronic structures and charge transfer mechanisms. We find that MoO3-x is an effective surface electron acceptor and the spatial extent of doped holes in hydrogenated diamond is extended, promoting excellent transport properties. Charge transfer is found to monotonically decrease with the level of oxygen vacancy, providing guidance for engineering of the surface transfer doping process.

5.
J Phys Chem Lett ; 14(44): 10080-10087, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37917420

RESUMO

Iodine oxides I2Oy (y = 4, 5, 6) crystallize into atypical structures that fall between molecular- and framework-base types and exhibit high reactivity in an ambient environment, a property highly desired in the so-called "agent defeat materials". Inelastic neutron scattering experiments were performed to determine the phonon density of states of the newly synthesized I2O5 and I2O6 samples. First-principles calculations were carried out for I2O4, I2O5, and I2O6 to predict their thermodynamic properties and phonon density of states. Comparison of the INS data with the Raman and infrared measurements as well as the first-principles calculations sheds light on their distinctive, anisotropic thermomechanical properties.

7.
Nano Lett ; 23(16): 7456-7462, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556684

RESUMO

We have developed an extension of the Neural Network Quantum Molecular Dynamics (NNQMD) simulation method to incorporate electric-field dynamics based on Born effective charge (BEC), called NNQMD-BEC. We first validate NNQMD-BEC for the switching mechanisms of archetypal ferroelectric PbTiO3 bulk crystal and 180° domain walls (DWs). NNQMD-BEC simulations correctly describe the nucleation-and-growth mechanism during DW switching. In triaxially strained PbTiO3 with strain conditions commonly seen in many superlattice configurations, we find that flux-closure texture can be induced with application of an electric field perpendicular to the original polarization direction. Upon field reversal, the flux-closure texture switches via a pair of transient vortices as the intermediate state, indicating an energy-efficient switching pathway. Our NNQMD-BEC method provides a theoretical guidance to study electro-mechano effects with existing machine learning force fields using a simple BEC extension, which will be relevant for engineering applications such as field-controlled switching in mechanically strained ferroelectric devices.

8.
ACS Nano ; 17(8): 7576-7583, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053468

RESUMO

Understanding oxidation mechanisms of layered semiconducting transition-metal dichalcogenides (TMDC) is important not only for controlling native oxide formation but also for synthesis of oxide and oxysulfide products. Here, reactive molecular dynamics simulations show that oxygen partial pressure controls not only the ZrS2 oxidation rate but also the oxide morphology and quality. We find a transition from layer-by-layer oxidation to amorphous-oxide-mediated continuous oxidation as the oxidation progresses, where different pressures selectively expose different oxidation stages within a given time window. While the kinetics of the fast continuous oxidation stage is well described by the conventional Deal-Grove model, the layer-by-layer oxidation stage is dictated by reactive bond-switching mechanisms. This work provides atomistic details and a potential foundation for rational pressure-controlled oxidation of TMDC materials.

9.
Small ; 19(29): e2300098, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026674

RESUMO

Ultrathin MoS2 has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS2 by deforming the atomically thin material and exciting surface acoustic waves (SAWs). Additionally, the direct correlation between stress and lattice disorder by probing the intrinsic defects and atomic environments are demonstrated. The method introduced in this paper sheds light on how engineering defects in the lattice can be used to tailor the angular mismatch in van der Waals (vdW) solids.

10.
J Phys Chem Lett ; 14(7): 1732-1739, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757778

RESUMO

Effects of lateral compression on out-of-plane deformation of two-dimensional MoSe2 layers are investigated. A MoSe2 monolayer develops periodic wrinkles under uniaxial compression and Miura-Ori patterns under biaxial compression. When a flat MoSe2 monolayer is placed on top of a wrinkled MoSe2 layer, the van der Waals (vdW) interaction transforms wrinkles into ridges and generates mixed 2H and 1T phases and chain-like defects. Under a biaxial strain, the vdW interaction induces regions of Miura-Ori patterns in bilayers. Strained systems analyzed using a convolutional neural network show that the compressed system consists of semiconducting 2H and metallic 1T phases. The energetics, mechanical response, defect structure, and dynamics are analyzed as bilayers undergo wrinkle-ridge transformations under uniaxial compression and moiré transformations under biaxial compression. Our results indicate that in-plane compression can induce self-assembly of out-of-plane metasurfaces with controllable semiconducting and metallic phases and moiré patterns with unique optoelectronic properties.

11.
J Phys Chem Lett ; 13(48): 11335-11345, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36454058

RESUMO

Mechanical controllability of recently discovered topological defects (e.g., skyrmions) in ferroelectric materials is of interest for the development of ultralow-power mechano-electronics that are protected against thermal noise. However, fundamental understanding is hindered by the "multiscale quantum challenge" to describe topological switching encompassing large spatiotemporal scales with quantum mechanical accuracy. Here, we overcome this challenge by developing a machine-learning-based multiscale simulation framework─a hybrid neural network quantum molecular dynamics (NNQMD) and molecular mechanics (MM) method. For nanostructures composed of SrTiO3 and PbTiO3, we find how the symmetry of mechanical loading essentially controls polar topological switching. We find under symmetry-breaking uniaxial compression a squishing-to-annihilation pathway versus formation of a topological composite named skyrmionium under symmetry-preserving isotropic compression. The distinct pathways are explained in terms of the underlying materials' elasticity and symmetry, as well as the Landau-Lifshitz-Kittel scaling law. Such rational control of ferroelectric topologies will likely facilitate exploration of the rich ferroelectric "topotronics" design space.

12.
Sci Rep ; 12(1): 19458, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376359

RESUMO

Typical ductile materials are metals, which deform by the motion of defects like dislocations in association with non-directional metallic bonds. Unfortunately, this textbook mechanism does not operate in most inorganic semiconductors at ambient temperature, thus severely limiting the development of much-needed flexible electronic devices. We found a shear-deformation mechanism in a recently discovered ductile semiconductor, monoclinic-silver sulfide (Ag2S), which is defect-free, omni-directional, and preserving perfect crystallinity. Our first-principles molecular dynamics simulations elucidate the ductile deformation mechanism in monoclinic-Ag2S under six types of shear systems. Planer mass movement of sulfur atoms plays an important role for the remarkable structural recovery of sulfur-sublattice. This in turn arises from a distinctively high symmetry of the anion-sublattice in Ag2S, which is not seen in other brittle silver chalcogenides. Such mechanistic and lattice-symmetric understanding provides a guideline for designing even higher-performance ductile inorganic semiconductors.

13.
J Phys Chem Lett ; 13(43): 10230-10236, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36300798

RESUMO

Nonadiabatic quantum molecular dynamics is used to investigate the evolution of GeTe photoexcited states. Results reveal a photoexcitation-induced picosecond nonthermal path for the loss of long-range order. A valence electron excitation threshold of 4% is found to trigger local disorder by switching Ge atoms from octahedral to tetrahedral sites and promoting Ge-Ge bonding. The resulting loss of long-range order for a higher valence electron excitation fraction is achieved without fulfilling the Lindemann criterion for melting, therefore utilizing a nonthermal path. The photoexcitation-induced structural disorder is accompanied by charge transfer from Te to Ge, Ge-Te bonding-to-antibonding, and Ge-Ge antibonding-to-bonding change, triggering Ge-Te bond breaking and promoting the formation of Ge-Ge wrong bonds. These results provide an electronic-structure basis to understand the photoexcitation-induced ultrafast changes in the structure and properties of GeTe and other phase-change materials.

14.
J Chem Phys ; 157(4): 044105, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922358

RESUMO

Aramid fibers composed of poly(p-phenylene terephthalamide) (PPTA) polymers are attractive materials due to their high strength, low weight, and high shock resilience. Even though they have widely been utilized as a basic ingredient in Kevlar, Twaron, and other fabrics and applications, their intrinsic behavior under intense shock loading is still to be understood. In this work, we characterize the anisotropic shock response of PPTA crystals by performing reactive molecular dynamics simulations. Results from shock loading along the two perpendicular directions to the polymer backbones, [100] and [010], indicate distinct shock release mechanisms that preserve and destroy the hydrogen bond network. Shocks along the [100] direction for particle velocity Up < 2.46 km/s indicate the formation of a plastic regime composed of shear bands, where the PPTA structure is planarized. Shocks along the [010] direction for particle velocity Up < 2.18 km/s indicate a complex response regime, where elastic compression shifts to amorphization as the shock is intensified. While hydrogen bonds are mostly preserved for shocks along the [100] direction, hydrogen bonds are continuously destroyed with the amorphization of the crystal for shocks along the [010] direction. Decomposition of the polymer chains by cross-linking is triggered at the threshold particle velocity Up = 2.18 km/s for the [010] direction and Up = 2.46 km/s for the [100] direction. These atomistic insights based on large-scale simulations highlight the intricate and anisotropic mechanisms underpinning the shock response of PPTA polymers and are expected to support the enhancement of their applications.

15.
J Phys Chem Lett ; 13(30): 7051-7057, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35900140

RESUMO

The nature of hydrogen bonding in condensed ammonia phases, liquid and crystalline ammonia has been a topic of much investigation. Here, we use quantum molecular dynamics simulations to investigate hydrogen bond structure and lifetimes in two ammonia phases: liquid ammonia and crystalline ammonia-I. Unlike liquid water, which has two covalently bonded hydrogen and two hydrogen bonds per oxygen atom, each nitrogen atom in liquid ammonia is found to have only one hydrogen bond at 2.24 Å. The computed lifetime of the hydrogen bond is t ≅ 0.1 ps. In contrast to crystalline water-ice, we find that hydrogen bonding is practically nonexistent in crystalline ammonia-I.

16.
J Chem Inf Model ; 62(14): 3346-3351, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35786887

RESUMO

The principle of least action is the cornerstone of classical mechanics, theory of relativity, quantum mechanics, and thermodynamics. Here, we describe how a neural network (NN) learns to find the trajectory for a Lennard-Jones (LJ) system that maintains balance in minimizing the Onsager-Machlup (OM) action and maintaining the energy conservation. The phase-space trajectory thus calculated is in excellent agreement with the corresponding results from the "ground-truth" molecular dynamics (MD) simulation. Furthermore, we show that the NN can easily find structural transformation pathways for LJ clusters, for example, the basin-hopping transformation of an LJ38 from an incomplete Mackay icosahedron to a truncated face-centered cubic octahedron. Unlike MD, the NN computes atomic trajectories over the entire temporal domain in one fell swoop, and the NN time step is a factor of 20 larger than the MD time step. The NN approach to OM action is quite general and can be adapted to model morphometrics in a variety of applications.


Assuntos
Simulação de Dinâmica Molecular , Redes Neurais de Computação , Fenômenos Biofísicos , Termodinâmica
17.
Phys Chem Chem Phys ; 24(17): 10378-10383, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438706

RESUMO

Metal-fullerene compounds are characterized by significant electron transfer to the fullerene cage, giving rise to an electric dipole moment. We use the method of electrostatic beam deflection to verify whether such reactions take place within superfluid helium nanodroplets between an embedded C60 molecule and either alkali (heliophobic) or rare-earth (heliophilic) atoms. The two cases lead to distinctly different outcomes: C60Nan (n = 1-4) display no discernable dipole moment, while C60Yb is strongly polar. This suggests that the fullerene and small alkali clusters fail to form a charge-transfer bond in the helium matrix despite their strong van der Waals attraction. The C60Yb dipole moment, on the other hand, is in agreement with the value expected for an ionic complex.

18.
Sci Adv ; 8(12): eabk2625, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319991

RESUMO

Ferroelectric materials exhibit a rich range of complex polar topologies, but their study under far-from-equilibrium optical excitation has been largely unexplored because of the difficulty in modeling the multiple spatiotemporal scales involved quantum-mechanically. To study optical excitation at spatiotemporal scales where these topologies emerge, we have performed multiscale excited-state neural network quantum molecular dynamics simulations that integrate quantum-mechanical description of electronic excitation and billion-atom machine learning molecular dynamics to describe ultrafast polarization control in an archetypal ferroelectric oxide, lead titanate. Far-from-equilibrium quantum simulations reveal a marked photo-induced change in the electronic energy landscape and resulting cross-over from ferroelectric to octahedral tilting topological dynamics within picoseconds. The coupling and frustration of these dynamics, in turn, create topological defects in the form of polar strings. The demonstrated nexus of multiscale quantum simulation and machine learning will boost not only the emerging field of ferroelectric topotronics but also broader optoelectronic applications.

19.
ACS Appl Mater Interfaces ; 13(50): 60393-60400, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34890506

RESUMO

Polymer dielectrics can be cost-effective alternatives to conventional inorganic dielectric materials, but their practical application is critically hindered by their breakdown under high electric fields driven by excited hot charge carriers. Using a joint experiment-simulation approach, we show that a 2D nanocoating of hexagonal boron nitride (hBN) mitigates the damage done by hot carriers, thereby increasing the breakdown strength. Surface potential decay and dielectric breakdown measurements of hBN-coated Kapton show the carrier-trapping effect in the hBN nanocoating, which leads to an increased breakdown strength. Nonadiabatic quantum molecular dynamics simulations demonstrate that hBN layers at the polymer-electrode interfaces can trap hot carriers, elucidating the observed increase in the breakdown field. The trapping of hot carriers is due to a deep potential well formed in the hBN layers at the polymer-electrode interface. Searching for materials with similar deep well potential profiles could lead to a computationally efficient way to design good polymer coatings that can mitigate breakdown.

20.
iScience ; 24(12): 103532, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917904

RESUMO

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention owing to their prosperity in material research. The inimitable features of TMDCs triggered the emerging applications in diverse areas. In this review, we focus on the tailored and engineering of the crystal lattice of TMDCs that finally enhance the efficiency of the material properties. We highlight several preparation techniques and recent advancements in compositional engineering of TMDCs structure. We summarize different approaches for TMDCs such as doping and alloying with different materials, alloying with other 2D metals, and scrutinize the technological potential of these methods. Beyond that, we also highlight the recent significant advancement in preparing 2D quasicrystals and alloying the 2D TMDCs with MAX phases. Finally, we highlight the future perspectives for crystal engineering in TMDC materials for structure stability, machine learning concept marge with materials, and their emerging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...