Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochem J ; 396(3): 565-71, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16594895

RESUMO

We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0.Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0.Ph-L12 complex and Ph-L11 could replace L10.L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.


Assuntos
Proteínas Arqueais/metabolismo , GTP Fosfo-Hidrolases/biossíntese , Pyrococcus horikoshii/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Dados de Sequência Molecular , Fatores de Alongamento de Peptídeos/metabolismo , Fosfoproteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência
2.
Cytotechnology ; 42(2): 57-66, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19002928

RESUMO

Primary human fetal hepatocytes proliferated in monolayer culture up to the 9th passage. During proliferation, the cells changed their morphology from a fibroblast-like shape after inoculation to an epithelia-like polygonal shape after they reached confluence. The proliferation was associated with the loss of ammonia detoxification capacity, which is essential for the function of bioartificial liver. The cells formed spheroids on a poly-glutamic acid- or poly-aspartic acid-coated polystyrene dish that had a negatively charged surface at neutral pH. However, the cells did not form spheroids on a poly-lysine- or poly-arginine-coated dish that had a positively charged surface, which is reportedly suitable to form spheroids for adult hepatocytes. The activity of cytochrome P450 (CYP 1A1, CYP1A2) of the cells in spheroid culture was about twice as high as that of the cells in monolayer culture. The ammonia detoxification activity of the cells was restored in spheroid culture by treatment with 2% dimethylsulfoxide. These results suggest that the conditions for human fetal hepatocytes to form spheroids are different from that for adult hepatocytes, and the use of poly-glutamic acid or poly-aspartic acid coating may improve spheroid culture of proliferative human fetal hepatocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...