Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sports Med Health Sci ; 6(1): 48-53, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463667

RESUMO

This study aimed to identify the reasons for transferring athletes to local medical facilities during the Olympic and Paralympic Games. Data on 567 injuries and other illnesses of athletes treated at the on-site clinics were collected from the Tokyo 2020 Organizing Committee. Of these, 84 athletes who required outpatient care during the Games were registered for this survey. During the Olympic and Paralympic Games, 66 (8.3/1 000) and 18 (7.2/1 000) athletes, respectively, consulted external medical facilities. In the Olympic Games, the reasons for these visits included 48 cases (72.7%) of injuries, 13 (19.7%) cases of illnesses, and 5 (7.6%) cases of heat stroke illness (HSI). Of these patients, 56 (84.9%) were treated as outpatients and 10 (15.1%) were hospitalized, while three of these patients required hospitalization for > 7 days. On the other hand, in the Paralympics Games, there were 7 (38.8%) cases of injuries, 9 (50.0%) other illnesses, 1 (5.6%) case of HSI, and 1 (5.6%) other cases, of which 11 (61.1%) were treated as outpatients and 7 (38.9%) were hospitalized, but none was hospitalized for > 7 days. Injuries accounted for 70% of the total cases at the 2021 Olympic Games, but only three (0.05%) were severe cases that required hospitalization for more than 1 week. In contrast, in the Paralympic Games, other illnesses accounted for approximately half of the total cases. This study provides details on the extent of injuries and other illnesses that were transferred to outside facilities, which has not been documented in previous games.

2.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38078530

RESUMO

TurboGenius is an open-source Python package designed to fully control ab initio quantum Monte Carlo (QMC) jobs using a Python script, which allows one to perform high-throughput calculations combined with TurboRVB [Nakano et al. J. Phys. Chem. 152, 204121 (2020)]. This paper provides an overview of the TurboGenius package and showcases several results obtained in a high-throughput mode. For the purpose of performing high-throughput calculations with TurboGenius, we implemented another open-source Python package, TurboWorkflows, that enables one to construct simple workflows using TurboGenius. We demonstrate its effectiveness by performing (1) validations of density functional theory (DFT) and QMC drivers as implemented in the TurboRVB package and (2) benchmarks of Diffusion Monte Carlo (DMC) calculations for several datasets. For (1), we checked inter-package consistencies between TurboRVB and other established quantum chemistry packages. By doing so, we confirmed that DFT energies obtained by PySCF are consistent with those obtained by TurboRVB within the local density approximation (LDA) and that Hartree-Fock (HF) energies obtained by PySCF and Quantum Package are consistent with variational Monte Carlo energies obtained by TurboRVB with the HF wavefunctions. These validation tests constitute a further reliability check of the TurboRVB package. For (2), we benchmarked the atomization energies of the Gaussian-2 set, the binding energies of the S22, A24, and SCAI sets, and the equilibrium lattice parameters of 12 cubic crystals using DMC calculations. We found that, for all compounds analyzed here, the DMC calculations with the LDA nodal surface give satisfactory results, i.e., consistent either with high-level computational or with experimental reference values.

3.
BMJ Open Sport Exerc Med ; 9(2): e001467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051574

RESUMO

Introduction: Among the 43 venues of Tokyo 2020 Olympic Games (OG) and 33 venues of Paralympic Games (PG) were held, the heat island effect was highly expected to cause heat-related illnesses in the outdoor venues with maximum temperatures exceeding 35°C. However, the actual number of heat-related illness cases during the competition was lower than that was initially expected, and it was unclear under what conditions or environment-related heat illnesses occurred among athletes. Object: To clarify the cause and factors contributing to the occurrence of heat-related illness among athletes participating in the Tokyo 2020 Olympic and Paralympic Games. Method: This retrospective descriptive study included 15 820 athletes from 206 countries. From 21 July 2021 to 8 August 2021 for the Olympics, and from 24 August 2021 to 5 September 2021 for the Paralympics. The number of heat-related illness cases at each venue, the incidence rate for each event, gender, home continent, as well as the type of competition, environmental factors (such as venue, time, location and wet-bulb globe temperature (WBGT)), treatment factor and the type of competition were analysed. Results: More number of heat-related illnesses among athletes occurred at the OG (n=110, 76.3%) than at the PG (n=36, 23.7%). A total of 100 cases (100%) at the OG and 31 cases (86.1%) at the PG occurred at the outdoors venues. In the OG, a total of 50 cases (57.9%) occurred during the competition of marathon running and race walking at Sapporo Odori Park. Six of those, were diagnosed with exertional heat illness and treated with cold water immersion (CWI) at OG and one case at PG. Another 20 cases occurred in athletics (track and field) competitions at Tokyo National Olympic Stadium. In total, 10 cases (10.0%) were diagnosed with severe heat illness in the OG and 3 cases (8.3%) in the PG. Ten cases were transferred to outside medical facilities for further treatment, but no case has been hospitalised due to severe condition. In the factor analysis, venue zone, outdoor game, high WBGT (<28°C) and endurance sports have been found to have a higher risk of moderate and severe heat-related illness (p<0.05). The incidence rate and severity could be attenuated by proper heat-related illness treatment (CWI, ice towel, cold IV transfusion and oral hydration) reduced the severity of the illness, providing summer hot environment sports. Conclusion: The Tokyo 2020 Olympic and Paralympic summer games were held. Contrary to expectations, we calculated that about 1 in 100 Olympic athletes suffered heat-related illness. We believe this was due to the risk reduction of heat-related illness, such as adequate prevention and proper treatment. Our experience in avoiding heat-related illness will provide valuable data for future Olympic summer Games.

4.
Angew Chem Int Ed Engl ; 62(30): e202301416, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37070794

RESUMO

Mixed-anion compounds have attracted growing attentions, but their synthesis is challenging, making a rational search desirable. Here, we explored LaF3 -LaX3 (X=Cl, Br, I) system using ab initio structure searches based on evolutionary algorithms, and predicted LaF2 X and LaFX2 (X=Br, I), which are respectively isostructural with LaHBr2 and YH2 I, consisting of layered La-F blocks with single and double ordered honeycomb lattices, separated by van der Waals gaps. We successfully synthesized these compounds: LaF2 Br and LaFI2 crystallize in the predicted structure, while LaF2 I is similar to the predicted one but with different layer stacking. LaF2 I exhibits fluoride ion conductivity comparable to that of non-doped LaF3 , and has the potential to show better ionic conductivity upon appropriate doping, given the theoretically lower diffusion energy barrier and the presence of soft iodine anions. This study shows the structure prediction using evolutionary algorithms will accelerate the discovery of mixed-anion compounds in future, in particular those with an ordered anion arrangement.

5.
Br J Sports Med ; 57(21): 1361-1370, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37055080

RESUMO

OBJECTIVE: To analyse injuries and illnesses during the 2020 Tokyo Olympic Summer Games. METHODS: This retrospective descriptive study included 11 420 athletes from 206 National Olympic Committees and 312 883 non-athletes. Incidences of injuries and illnesses during the competition period from 21 July to 8 August 2021 were analysed. RESULTS: A total of 567 athletes (416 injuries, 51 non-heat-related illnesses and 100 heat-related illnesses) and 541 non-athletes (255 injuries, 161 non-heat-related illnesses and 125 heat-related illnesses) were treated at the competition venue clinic. Patient presentation and hospital transportation rates per 1000 athletes were 50 and 5.8, respectively. Marathons and race walking had the highest incidence of injury and illness overall (17.9%; n=66). The highest incidence of injury (per participant) was noted in boxing (13.8%; n=40), sport climbing (12.5%; n=5) and skateboarding (11.3%; n=9), excluding golf, with the highest incidence of minor injuries. Fewer infectious illnesses than previous Summer Olympics were reported among the participants. Of the 100 heat-related illnesses in athletes, 50 occurred in the marathon and race walking events. Only six individuals were transported to a hospital due to heat-related illness, and none required hospital admission. CONCLUSION: Injuries and heat-related illnesses were lower than expected at the 2020 Tokyo Olympic Summer Games. No catastrophic events occurred. Appropriate preparation including illness prevention protocols, and treatment and transport decisions at each venue by participating medical personnel may have contributed to these positive results.


Assuntos
Traumatismos em Atletas , Transtornos de Estresse por Calor , Esportes , Humanos , Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/etiologia , Tóquio/epidemiologia , Estudos Retrospectivos , Atletas , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/prevenção & controle , Transtornos de Estresse por Calor/complicações
6.
J Chem Theory Comput ; 19(8): 2222-2229, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37014742

RESUMO

Herein, we report accurate atomization energy calculations for 55 molecules in the Gaussian-2 (G2) set using lattice regularized diffusion Monte Carlo (LRDMC). We compare the Jastrow-Slater determinant ansatz with a more flexible JsAGPs (Jastrow correlated antisymmetrized geminal power with singlet correlation) ansatz. AGPs is built from pairing functions, which explicitly include pairwise correlations among electrons, and hence, this ansatz is expected to be more efficient in recovering the correlation energy. The AGPs wave functions are first optimized at the variational Monte Carlo (VMC) level, which includes both the Jastrow factor and the nodal surface optimization. This is followed by the LRDMC projection of the ansatz. Remarkably, for many molecules, the LRDMC atomization energies obtained using the JsAGPs ansatz reach chemical accuracy (∼1 kcal/mol), and for most other molecules, the atomization energies are accurate within ∼5 kcal/mol. We obtained a mean absolute deviation of 1.6 kcal/mol with JsAGPs and 3.2 kcal/mol with JDFT (Jastrow factor + Slater determinant with DFT orbitals) ansatzes. This work shows the effectiveness of the flexible AGPs ansatz for atomization energy calculations and electronic structure simulations in general.

7.
J Phys Chem B ; 127(14): 3302-3311, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36999959

RESUMO

Topological data analysis (TDA) is a newly emerging and powerful tool for understanding the medium-range structure ordering of multiscale data. This study investigates the density anomalies observed during the cooling of liquid silica from a topological point of view using TDA. The density of liquid silica does not monotonically increase during cooling; it instead shows a maximum and minimum. Despite tremendous efforts, the structural origin of these density anomalies is not clearly understood. Our approach reveals that the one-dimensional topology of the -Si-Si- network changes at the temperatures at which the maximum and minimum densities are observed in our MD simulations, while those of the -O-O- and -Si-O- networks change at lower temperatures. Our ring analysis motivated by the TDA outcomes reveals that quantitative changes in -Si-Si- rings occur at the temperatures where the density is maximized and minimized, while those of the -O-O- and -Si-O- rings occur at lower temperatures; such findings are perfectly consistent with our TDA results. Our work demonstrates the value of new topological techniques in understanding the transitions in glassy materials and sheds light on the characterization of glass-liquid transitions.

8.
J Chem Inf Model ; 62(12): 2909-2915, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35678099

RESUMO

A common approach for studying a solid solution or disordered system within a periodic ab initio framework is to create a supercell in which certain amounts of target elements are substituted with other elements. The key to generating supercells is determining how to eliminate symmetry-equivalent structures from many substitution patterns. Although the total number of substitutions is on the order of trillions, only symmetry-inequivalent atomic substitution patterns need to be identified, and their number is far smaller than the total. Our developed Python software package, which is called Shry (Suite for High-throughput generation of models with atomic substitutions implemented by Python), allows the selection of only symmetry-inequivalent structures from the vast number of candidates based on the canonical augmentation algorithm. Shry is implemented in Python 3 and uses the CIF format as the standard for both reading and writing the reference and generated sets of substituted structures. Shry can be integrated into another Python program as a module or can be used as a stand-alone program. The implementation was verified through a comparison with other codes with the same functionality, based on the total numbers of symmetry-inequivalent structures, and also on the equivalencies of the output structures themselves. The provided crystal structure data used for the verification are expected to be useful for benchmarking other codes and also developing new algorithms in the future.


Assuntos
Algoritmos , Software
9.
Artigo em Inglês | MEDLINE | ID: mdl-35575009

RESUMO

The cathode material of a lithium-ion battery is a key component that affects durability, capacity, and safety. Compared to the LiCoO2 cathode material (the reference standard for these properties), LiNiO2 can extract more Li at the same voltage and has therefore attracted considerable attention as a material that can be used to obtain higher capacity. As a trade-off, it undergoes pyrolysis relatively easily, leading to ignition and explosion hazards, which is a challenge associated with the application of this compound. Pyrolysis has been identified as a structural phase transformation of the layered rocksalt structure → spinel → cubic rocksalt. Partial substitution of Ni with various elements can reportedly suppress the transformation and, hence, the pyrolysis. It remains unclear which elemental substitutions inhibit pyrolysis and by what mechanism, leading to costly material development that relies on empirical trial and error. In this study, we developed several possible reaction models based on existing reports, estimated the enthalpy change associated with the reaction by ab initio calculations, and identified promising elemental substitutions. The possible models were narrowed down by analyzing the correlations of the predicted dependence of the reaction enthalpies on elemental substitutions, compared between different reaction models. According to this model, substitution by P and Ta affords the highest enthalpy barrier between the initial (layered rocksalt) and the final (cubic rocksalt) structures but promotes the initial transformation to spinel as a degradation. Substitution by W instead generates the barrier to the final (preventing dangerous incidents) process, as well as for the initial degradation to spinel; therefore, it is a promising strategy to suppress the predicted pyrolysis.

10.
J Chem Phys ; 156(3): 034101, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065566

RESUMO

Ab initio quantum Monte Carlo (QMC) methods are a state-of-the-art computational approach to obtaining highly accurate many-body wave functions. Although QMC methods are widely used in physics and chemistry to compute ground-state energies, calculation of atomic forces is still under technical/algorithmic development. Very recently, force evaluation has started to become of paramount importance for the generation of machine-learning force-field potentials. Nevertheless, there is no consensus regarding whether an efficient algorithm is available for the QMC force evaluation, namely, one that scales well with the number of electrons and the atomic numbers. In this study, we benchmark the accuracy of all-electron variational Monte Carlo (VMC) and lattice-regularized diffusion Monte Carlo (LRDMC) forces for various mono- and heteronuclear dimers (1 ≤ Z ≤ 35, where Z is the atomic number). The VMC and LRDMC forces were calculated with and without the so-called space-warp coordinate transformation (SWCT) and appropriate regularization techniques to remove the infinite variance problem. The LRDMC forces were computed with the Reynolds (RE) and variational-drift (VD) approximations. The potential energy surfaces obtained from the LRDMC energies give equilibrium bond lengths (req) and harmonic frequencies (ω) very close to the experimental values for all dimers, improving the corresponding VMC results. The LRDMC forces with the RE approximation improve the VMC forces, implying that it is worth computing the DMC forces beyond VMC despite the higher computational cost. The LRDMC forces with the VD approximations also show improvement, which unfortunately comes at a much higher computational cost in all-electron calculations. We find that the ratio of computational costs between QMC energy and forces scales as Z∼2.5 without the SWCT. In contrast, the application of the SWCT makes the ratio independent of Z. As such, the accessible QMC system size is not affected by the evaluation of ionic forces but governed by the same scaling as the total energy one.

11.
Phys Chem Chem Phys ; 24(6): 3761-3769, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080527

RESUMO

The disiloxane molecule is a prime example of silicate compounds containing the Si-O-Si bridge. The molecule is of significant interest within the field of quantum chemistry, owing to the difficulty in theoretically predicting its properties. Herein, the linearisation barrier of disiloxane is investigated using a fixed-node diffusion Monte Carlo (FNDMC) approach, which is one of the most reliable ab initio methods in accounting for the electronic correlation. Calculations utilizing the density functional theory (DFT) and the coupled cluster method with single and double substitutions, including noniterative triples (CCSD(T)) are carried out alongside FNDMC for comparison. It is concluded that FNDMC successfully predicts the disiloxane linearisation barrier and does not depend on the completeness of the basis-set as much as DFT or CCSD(T), thus establishing its suitability.

12.
Sci Rep ; 11(1): 7261, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790312

RESUMO

We have developed a framework for using quantum annealing computation to evaluate a key quantity in ionic diffusion in solids, the correlation factor. Existing methods can only calculate the correlation factor analytically in the case of physically unrealistic models, making it difficult to relate microstructural information about diffusion path networks obtainable by current ab initio techniques to macroscopic quantities such as diffusion coefficients. We have mapped the problem into a quantum spin system described by the Ising Hamiltonian. By applying our framework in combination with ab initio technique, it is possible to understand how diffusion coefficients are controlled by temperatures, pressures, atomic substitutions, and other factors. We have calculated the correlation factor in a simple case with a known exact result by a variety of computational methods, including simulated quantum annealing on the spin models, the classical random walk, the matrix description, and quantum annealing on D-Wave with hybrid solver . This comparison shows that all the evaluations give consistent results with each other, but that many of the conventional approaches require infeasible computational costs. Quantum annealing is also currently infeasible because of the cost and scarcity of qubits, but we argue that when technological advances alter this situation, quantum annealing will easily outperform all existing methods.

13.
Inorg Chem ; 60(4): 2228-2233, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33502187

RESUMO

Making and breaking bonds in a solid-state compound greatly influences physical properties. A well-known playground for such bonding manipulation is the ThCr2Si2-type structure AT2X2, allowing a collapse transition where a X-X dimer forms by a chemical substitution or external stimuli. Here, we report a pressure-induced collapse transition in the structurally related BaTi2Pn2O (Pn = As, Sb) at a transition pressure Pc of ∼15 GPa. The Pn-Pn bond formation is related with Pn-p band filling, which is controlled by charge transfer from the Ti-3d band. At Pc, the Sb-Sb distance in BaTi2Sb2O shrinks due to bond formation, but interestingly, the Sb-Sb expands with increasing pressure above Pc. This expansion, which was not reported in ThCr2Si2-type compounds, may arise from heteroleptic coordination geometry around titanium, where a compression of the Ti-O bond plays a role. Electrical resistivity measurements of BaTi2Sb2O up to 55 GPa revealed an increasing trend of the superconducting transition temperature with pressure. This study presents structure motifs that allow flexible bonding manipulation and property control with heteroleptic coordination geometry.

14.
J Chem Theory Comput ; 16(10): 6114-6131, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32804497

RESUMO

We propose here a single Pfaffian correlated variational ansatz that dramatically improves the accuracy with respect to the single determinant one, while remaining at a similar computational cost. A much larger correlation energy is indeed determined by the most general two electron pairing function, including both singlet and triplet channels, combined with a many-body Jastrow factor, including all possible spin-spin, spin-density, and density-density terms. The main technical ingredient to exploit this accuracy is the use of the Pfaffian for antisymmetrizing a highly correlated pairing function, thus recovering the Fermi statistics for electrons with an affordable computational cost. Moreover, the application of the diffusion Monte Carlo, within the fixed node approximation, allows us to obtain very accurate binding energies for the first preliminary calculations reported in this study: C2, N2, and O2 and the benzene molecule. This is promising and remarkable, considering that they represent extremely difficult molecules even for computationally demanding multideterminant approaches, and opens therefore the way for realistic and accurate electronic simulations with an algorithm scaling at most as the fourth power of the number of electrons.

15.
J Chem Phys ; 152(20): 204121, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486669

RESUMO

TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators.

16.
J Chem Theory Comput ; 15(7): 4044-4055, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31117480

RESUMO

In this work, we report potential energy surfaces (PESs) of the sodium dimer calculated by variational (VMC) and lattice-regularized diffusion Monte Carlo (LRDMC). The VMC calculation is accurate for determining the equilibrium distance and the qualitative shape of the experimental PES. Remarkably, after the application of the LRDMC projection to this single determinant ansatz, namely, the Jastrow Antisymmetrized Geminal Power (JAGP), chemical accuracy (∼1 kcal/mol) is reached in the binding energy, and the obtained equilibrium internuclear distance and harmonic vibrational frequency are in very good agreement with the experimental ones. This outcome is crucially dependent on the quality of the optimization used to determine the best possible trial function within the chosen ansatz. The strategy adopted in this work is to minimize the variational energy by initializing the trial function with the density functional theory (DFT) single determinant ansatz expanded exactly in the same atomic basis used for the corresponding VMC and LRDMC calculations. This atomic basis is reshaped ad-hoc for QMC calculations. Indeed, we multiply the standard Gaussian-type atomic orbitals by a one-body Jastrow factor, satisfying, in this way, the electron-ion cusp conditions. In order to achieve these important advantages, we have defined a very efficient DFT algorithm in the mentioned basis, by estimating the corresponding matrix elements on a mesh, and by using a much finer mesh grid in the vicinity of nuclei.

17.
Angew Chem Int Ed Engl ; 58(3): 756-759, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30430710

RESUMO

Square-planar coordinate Ni2+ ions in oxides are exclusively limited to a low-spin state (S=0) owing to extensive crystal field splitting. Layered oxychalcogenides A2 NiII O2 Ag2 Se2 (A=Sr, Ba) with the S=1 NiO2 square lattice are now reported. The structural analysis revealed that the Ni2+ ion is under-bonded by a significant tensile strain from neighboring Ag2 Se2 layers, leading to the reduction in crystal field splitting. Ba2 NiO2 Ag2 Se2 exhibits a G-type spin order at 130 K, indicating fairly strong in-plane interactions. The high-pressure synthesis employed here possibly assists the expansion of NiO2 square lattice by taking the advantage of the difference in compressibility in oxide and selenide layers.

18.
J Am Chem Soc ; 139(51): 18725-18731, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29210576

RESUMO

A layered oxychloride Bi4NbO8Cl is a visible-light responsive catalyst for water splitting, with its remarkable stability ascribed to the highly dispersive O-2p orbitals in the valence band, the origin of which, however, remains unclear. Here, we systematically investigate four series of layered bismuth oxyhalides, BiOX (X = Cl, Br, I), Bi4NbO8X (X = Cl, Br), Bi2GdO4X (X = Cl, Br), and SrBiO2X (X = Cl, Br, I), and found that Madelung site potentials of anions capture essential features of the valence band structures of these materials. The oxide anion in fluorite-like blocks (e.g., [Bi2O2] slab in Bi4NbO8Cl) is responsible for the upward shift of the valence band, and the degree of electrostatic destabilization changes depending on building layers and their stacking sequence. This study suggests that the Madelung analysis enables a prediction and design of the valence band structures of bismuth and other layered oxyhalides and is applicable even to a compound where DFT calculation is difficult to perform.

19.
Hinyokika Kiyo ; 63(10): 395-398, 2017 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-29103251

RESUMO

A 37-year-old woman with the complaint of stomachache was referred to our hospital because a retroperitoneal tumor was detected in an ultrasound study at another hospital. Magnetic resonance imaging showed a poorly enhanced 14 cm tumor in the left retroperitoneal space suggesting a cyst that contained fat and showed calcification. Abdominal dynamic computed tomography revealed left renal vein stenosis and left ovarian vein dilation caused by tumor compression of the renal vein. The tumor was excised together with the left kidney because the renal vein was adhered to the tumor. The resected specimen weighed 1,300 g, and the histological diagnosis was mature teratoma. The patient has experienced no recurrence at eight months after surgery.


Assuntos
Neoplasias Retroperitoneais/cirurgia , Teratoma/cirurgia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Nefrectomia , Neoplasias Retroperitoneais/patologia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
20.
Inorg Chem ; 56(22): 13732-13740, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29094926

RESUMO

We applied ab initio phonon analysis to layered titanium-oxypnictides, Na2Ti2Pn2O (Pn = As and Sb), and found a clear contrast between the cases with lighter/heavier pnictogen in comparison with experiments. The result completely explains the experimental structure at low temperature, C2/m for Pn = As, within the conventional charge density wave, while there arise discrepancies when the pnictogen gets heavier. Our phonon calculation using the GGA-PBE functional predicts that a Cmce polymorph is more stable than the experimentally observed one (Cmcm) for Pn = Sb. On the basis of further quantitative analysis, we suggest the possibility that the GGA-PBE functional does not properly reproduce the electron correlation effects for Pn = Sb, and this could be the reason for the present discrepancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...