Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Surg Res ; 124(1): 59-66, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15734480

RESUMO

BACKGROUND: High-mobility group 1 (HMGB-1) is a late mediator of endotoxin lethality in mice. The release of HMGB-1 is delayed compared to other proinflammatory cytokines that mediate shock and tissue injury. The purpose of this study was to investigate the role of HMGB-1 levels in response to hepatic ischemia, hepatic I/R injury, and the relationship between changes in HMGB-1 and other cytokines. MATERIALS AND METHODS: Three murine models were employed: our robust model of segmental hepatic warm ischemia (SHWI), a model of partial hepatic ischemia/reperfusion injury (PHIRI), and a model of total hepatic ischemia/reperfusion injury (THIRI). Over a 48-h period following ischemic insult and reperfusion using these models, serum HMGB-1 concentrations, concentrations of HMGB-1 in ischemic and nonischemic lobes, and serum concentrations of TNF-alpha and IL-6 levels were determined in mice. An anti-HMGB-1 antibody treatment was used in SHWI and THIRI to evaluate what aspects of response to ischemia and reperfusion were potentially mediated by HMGB-1. RESULTS: Hepatic HMGB-1 tissue concentrations exhibited biphasic changes in SHWI mice, which were increased in the ischemic lobes relative to nonischemic lobes at 12 h but decreased relative to nonischemic lobes at 24 h after ischemic insult. These results suggested that HMGB-1 was released into the systemic circulation by necrotic cells over the first 12 h but this process may be complete by 24 h postischemia. By 6 to 12 h after SHWI, serum TNF-alpha began to increase significantly and continued to increase for 18 h, followed by a sudden decline. Similarly, serum IL-6 increased over 1-3 h after SHWI and then decreased over the next 6 h. Treatment with an anti-HMGB-1 antibody significantly prolonged survival time in SHWI and THIRI. CONCLUSIONS: HMGB-1 plays a significant role in the response to hepatic ischemia and hepatic ischemia/reperfusion injury. The present study demonstrated a time-dependent production of HMGB-1 following hepatic warm ischemia in mice. The inherent HMGB-1 in ischemic areas was exhausted and HMGB-1 may be released by necrotic cells. HMGB-1 activation is involved in immediate proinflammatory stress response to I/R and anti-HMGB-1 antibody treatment remarkably improved survival. We demonstrated that systemic HMGB-1 accumulation was measured at an earlier phase of the hepatic ischemia and ischemia/reperfusion injury model than LPS-induced endotoxemia.


Assuntos
Proteína HMGB1/fisiologia , Isquemia/patologia , Fígado/irrigação sanguínea , Fígado/patologia , Traumatismo por Reperfusão/complicações , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Citocinas/fisiologia , Interleucina-6/sangue , Isquemia/etiologia , Isquemia/fisiopatologia , Falência Hepática/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Necrose , Fator de Necrose Tumoral alfa/análise
2.
Artif Organs ; 27(7): 598-604, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12823414

RESUMO

The purpose of this study is to utilize the thermo-reversible gelation polymer in which the sol-gel transitting phase is reversibly changed by temperature in a three-dimensional culture system. Human cancer cells have been observed to form multicellular spheroids, whereas fibroblasts slowly develop into small spheroids with the culture medium including this polymer. This polymer has some advantages for use as a culture material, as follows: first, cancer cells grow three-dimensionally in the aqueous solution of this polymer; second, it is easy to harvest cells or spheroids in the aqueous solution of this polymer by simply cooling down the temperature; and third, the culture medium including this polymer is so translucent that the cells or spheroids can be observed through a phase-contrast microscope. We thus conclude that this polymer is a very useful material for three-dimensional cultures.


Assuntos
Linhagem Celular Tumoral/citologia , Meios de Cultura , Polímeros , Esferoides Celulares/citologia , Técnicas de Cultura de Células/métodos , Divisão Celular , Géis , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...