Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Physiol Rep ; 12(2): e15925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262710

RESUMO

High-intensity intermittent exercise (HIIE) has become attractive for presenting a variety of exercise conditions. However, the effects of HIIE on renal function and hemodynamics remain unclear. This study aimed to compare the effects of HIIE and moderate-intensity continuous exercise (MICE) on renal hemodynamics, renal function, and kidney injury biomarkers. Ten adult males participated in this study. We allowed the participants to perform HIIE or MICE to consider the impact of exercise on renal hemodynamics under both conditions. Renal hemodynamic assessment and blood sampling were conducted before the exercise (pre) and immediately (post 0), 30 min (post 30), and 60 min (post 60) after the exercise. Urine sampling was conducted in the pre, post 0, and post 60 phases. There was no condition-by-time interaction (p = 0.614), condition (p = 0.422), or time effect (p = 0.114) regarding renal blood flow. Creatinine-corrected urinary neutrophil gelatinase-associated lipocalin concentrations increased at post 60 (p = 0.017), but none exceeded the cut-off values for defining kidney injury. Moreover, there were no significant changes in other kidney injury biomarkers at any point. These findings suggest that high-intensity exercise can be performed without decreased RBF or increased kidney injury risk when conducted intermittently for short periods.


Assuntos
Treinamento Intervalado de Alta Intensidade , Adulto , Masculino , Humanos , Ultrassonografia , Rim , Hemodinâmica , Biomarcadores
3.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 128-133, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158677

RESUMO

The neuronal nitric oxide synthase (nNOS; encoded by NOS1)-derived nitric oxide (NO) plays an important role in maintaining skeletal muscle mass. In adult skeletal muscle, nNOS localizes to the cell membrane, cytosol, and nucleus, and regulates muscle hypertrophy and atrophy in various subcellular fractions. However, its role in muscle stem cells (also known as muscle satellite cells), which provide myonuclei for postnatal muscle growth, maintenance, and regeneration, remains unclear. The present study aimed to determine nNOS expression in muscle satellite cell-derived primary myoblasts during differentiation and its DNA methylation levels, an epigenetic modification that controls gene expression. Undifferentiated and differentiated satellite cell-derived primary myoblasts were found to express nNOS. Immunohistochemical analysis revealed that nNOS colocalized with Pax7 (satellite cell marker) only in the undifferentiated myoblasts. Furthermore, nNOS immunoreactivity spread to the cytosol of Pax7-negative differentiated myotube-like cells. The level of Nos1µ mRNA, the main isoform of skeletal muscle nNOS, was increased in differentiated satellite cell-derived primary myoblasts compared to that in the undifferentiated cells. However, Nos1 methylation levels remained unchanged during differentiation. These findings suggest that nNOS induction and the appropriate transition of its subcellular localization may contribute to muscle differentiation.


Assuntos
Óxido Nítrico Sintase Tipo I , Células Satélites de Músculo Esquelético , Humanos , Diferenciação Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
5.
Clin Exp Nephrol ; 27(11): 972-980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37450106

RESUMO

BACKGROUND: Renal blood flow (RBF) decreases with exercise, but this change is only temporary, and habitual exercise may be an effective method to improve renal function. The kidney shows structural and functional changes with aging, but it is unclear how aging affects the hemodynamic response of the kidneys to exercise. Therefore, we evaluated the differences in the hemodynamic response of the kidneys to high-intensity exercise between younger and older men. METHODS: Sixteen men (8 young and 8 older) underwent an incremental exercise test using a cycle ergometer with a 1-min warm up followed by exercise at 10-20 W/min until the discontinuation criteria were met. Renal hemodynamics were assessed before exercise, immediately after exercise, and at 60-min after exercise using ultrasound echo. RESULTS: High-intensity exercise significantly reduced RBF in both groups (younger: ∆ - 53 ± 16%, p = 0.0005; older: ∆ - 53 ± 19%, p = 0.0004). In the younger group, RBF returned to the pre-exercise level 60-min after exercise (∆ - 0.4 ± 5.7%, p > 0.9999). In contrast, RBF 60-min after exercise was significantly lower than that before exercise in the older group (∆ - 24 ± 19%, p = 0.0006). The older group had significantly lower RBF than younger adults 60-min after exercise (423 ± 32 vs. 301 ± 98 mL/min, p = 0.0283). CONCLUSIONS: Our findings demonstrate that RBF following high-intensity exercise recovered 60-min after exercise in younger group, whereas RBF recovery was delayed in the older group.


Assuntos
Hemodinâmica , Rim , Masculino , Adulto , Humanos , Idoso , Hemodinâmica/fisiologia , Circulação Renal/fisiologia , Exercício Físico/fisiologia , Envelhecimento/fisiologia
6.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992045

RESUMO

Ultra-short-term heart rate variability (HRV) has been validated in the resting state, but its validity during exercise is unclear. This study aimed to examine the validity in ultra-short-term HRV during exercise considering the different exercise intensities. HRVs of twenty-nine healthy adults were measured during incremental cycle exercise tests. HRV parameters (Time-, frequency-domain and non-linear) corresponding to each of the 20% (low), 50% (moderate), and 80% (high) peak oxygen uptakes were compared between the different time segments of HRV analysis (180 s (sec) segment vs. 30, 60, 90, and 120-sec segments). Overall, the differences (bias) between ultra-short-term HRVs increased as the time segment became shorter. In moderate- and high-intensity exercises, the differences in ultra-short-term HRV were more significant than in low intensity exercise. Thus, we discovered that the validity of ultra-short-term HRV differed with the duration of the time segment and exercise intensities. However, the ultra-short-term HRV is feasible in the cycling exercise, and we determined some optimal time duration for HRV analysis for across exercise intensities during the incremental cycling exercise.


Assuntos
Teste de Esforço , Exercício Físico , Adulto , Humanos , Frequência Cardíaca/fisiologia , Exercício Físico/fisiologia , Fatores de Tempo , Terapia por Exercício
7.
Biomolecules ; 13(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36830597

RESUMO

Cholesterol efflux is a major atheroprotective function of high-density lipoproteins (HDLs) which removes cholesterol from the foam cells of lipid-rich plaques in Type 2 diabetes. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin phosphate increases plasma glucagon-like peptide-1 (GLP-1) concentrations and is used to treat Type 2 diabetes. GLP-1 plays an important role in regulating insulin secretion and expression via the GLP-1 receptor (GLP-1R), which is expressed in pancreatic islets as well as freshly isolated human monocytes and THP-1 cells. Here, we identified a direct role of GLP-1 and DPP-4 inhibition in HDL function. Cholesterol efflux was measured in cultivated phorbol 12-myristate 13-acetate-treated THP-1 cells radiolabeled with 3H-cholesterol and stimulated with liver X receptor/retinoid X receptor agonists. Contrary to vildagliptin, sitagliptin phosphate together with GLP-1 significantly (p < 0.01) elevated apolipoprotein (apo)A1-mediated cholesterol efflux in a dose-dependent manner. The sitagliptin-induced increase in cholesterol efflux did not occur in the absence of GLP-1. In contrast, adenosine triphosphate-binding cassette transporter A1 (ABCA1) mRNA and protein expressions in the whole cell fraction were not changed by sitagliptin in the presence of GLP-1, although sitagliptin treatment significantly increased ABCA1 protein expression in the membrane fraction. Furthermore, the sitagliptin-induced, elevated efflux in the presence of GLP-1 was significantly decreased by a GLP-1R antagonist, an effect that was not observed with a protein kinase A inhibitor. To our knowledge, the present study reports for the first time that sitagliptin elevates cholesterol efflux in cultivated macrophages and may exert anti-atherosclerotic actions that are independent of improvements in glucose metabolism. Our results suggest that sitagliptin enhances HDL function by inducing a de novo HDL synthesis via cholesterol efflux.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Fosfato de Sitagliptina , Diabetes Mellitus Tipo 2/metabolismo , Células THP-1 , Hipoglicemiantes , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Colesterol/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases
8.
Front Nutr ; 10: 1297008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260075

RESUMO

Policosanol supplementation has been reported to increase high-density lipoprotein (HDL)-cholesterol (HDL-C). However, the association between Cuban policosanol supplementation and HDL cholesterol efflux capacity (CEC), an important function of HDL, remains unclear. We performed a lipoprotein analysis investigating 32 Japanese healthy participants (placebo, n = 17 or policosanol supplementation for 12 weeks, n = 15) from a randomized Cuban policosanol clinical trial. First, HDL CEC and HDL-related factors were measured before and after policosanol supplementation. Then, through electron microscopy after ultracentrifugation and high-performance liquid chromatography, HDL morphology and subclass were analyzed, respectively. Finally, the effects of policosanol supplementation regarding HDL function, HDL-related factors, and HDL morphology/component were examined. Cuban policosanol considerably increased the HDL CEC and HDL-C and apolipoprotein A-I (ApoA-I) levels. Furthermore, policosanol supplementation led to larger HDL particles, increased cholesterol content in larger HDL particles, and reduced triglyceride content in smaller HDL particles. In participants with high baseline HDL-C levels, the policosanol effects for HDL CEC are observed. HDL CEC fluctuation induced by policosanol was highly associated with HDL-C and ApoA-I changes. In conclusion, for the first time, we demonstrated that policosanol supplementation increased the HDL CEC in healthy participants.

9.
J Nutr Sci Vitaminol (Tokyo) ; 68(4): 243-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047095

RESUMO

We examined the effects of dietary vitamin D deficiency on markers of mitochondrial biogenesis and dynamics in rat soleus muscle. Male Wistar rats were fed a chow with no vitamin D (No-D; 0 IU/kg) or a moderate dose (Mod-D; 2,000 IU/kg) of vitamin D chow for 8 wk. Compared to the Mod-D group, at 8 wk the No-D group showed significantly lower serum 25(OH)D levels. Although vitamin D deficiency had no effect on body composition, the No-D rats showed significantly decreased levels of PGC-1α, a marker of skeletal muscle mitochondrial biogenesis, and DRP1, a marker of skeletal muscle mitochondrial fission. The change in the PGC-1α protein expression and the serum 25(OH)D concentrations were significantly correlated. The change in DRP1 protein expression and the serum 25(OH)D concentrations tended to be correlated. There was no significant between-group difference in markers of mitochondrial fusion (MFN2 and OPA1) and mitophagy (PARKIN) in soleus muscle, and no relationship with serum 25(OH)D concentrations. Collectively our findings suggest that dietary vitamin D deficiency decreased PGC-1α and DRP1 protein expression in rat soleus muscle.


Assuntos
Biogênese de Organelas , Deficiência de Vitamina D , Animais , Masculino , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/metabolismo
10.
Physiol Rep ; 10(15): e15420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35924347

RESUMO

Exercise is restricted for individuals with reduced renal function because exercising reduces blood flow to the kidneys. Safe and effective exercise programs for individuals with reduced renal function have not yet been developed. We previously examined the relationship between exercise intensity and renal blood flow (RBF), revealing that moderate-intensity exercise did not reduce RBF. Determining the effects of exercise duration on RBF may have valuable clinical applications. The current study examined the effects of a single bout of continuous exercise at lactate threshold (LT) intensity on renal hemodynamics. Eight adult males participated in this study. Participants underwent 30 min of aerobic exercise at LT intensity using a cycle ergometer. Evaluation of renal hemodynamics was performed before and after exercise, in the recovery phase using ultrasound echo. Furthermore, blood and urine samplings were conducted before and after exercise, in the recovery phase. Compared with resting, RBF was not significantly changed immediately after continuous exercise (319 ± 102 vs. 308 ± 79 ml/min; p = 0.976) and exhibited no significant changes in the recovery phase. Moreover, urinary kidney injury molecule-1 (uKIM-1) level exhibited no significant change immediately after continuous exercise (0.52 ± 0.20 vs. 0.46 ± 0.27 µg/g creatinine; p = 0.447). In addition, the results revealed no significant change in urinary uKIM-1 in 60-min after exercise. Other renal injury biomarkers exhibited a similar pattern. These findings indicate that a single bout of moderate-intensity continuous exercise maintains RBF and does not induce renal injury.


Assuntos
Exercício Físico , Circulação Renal , Adulto , Creatinina , Exercício Físico/fisiologia , Hemodinâmica/fisiologia , Humanos , Rim , Masculino
11.
Eur J Sport Sci ; 22(11): 1714-1723, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34708682

RESUMO

A low-frequency to a high-frequency component ratio (LF/HF) in heart rate variability (HRV) may not accurately reflect sympathetic nervous activity during exercise. Thus, a valid HRV-based index of sympathetic nervous activity is needed. Therefore, the heart rate to LF ratio (Heart rate/LF) was evaluated as sympathetic nervous activity index which is reflected by catecholamine levels during incremental exercise. In this study, 15 healthy adults performed an incremental exercise test using a cycle ergometer. HRV was derived from electrocardiography and HRV components related to the autonomic nervous system were obtained using frequency analysis. Heart rate/LF was calculated using the heart rate and LF component produced by HRV analysis. Catecholamine, blood lactate levels and respiratory gas were also measured throughout the exercise test. While LF/HF did not increase with increasing exercise intensity, Heart rate/LF non-linearly increased during the incremental exercise test, as did noradrenaline and blood lactate. Interestingly, Heart rate/LF values were positively correlated with noradrenaline (ρ = 0.788, p < 0.05) and blood lactate (ρ = 0.802, p < 0.05) levels and carbon dioxide production (ρ = 0.903, p < 0.05) from at rest through the exercise stages. Heart rate/LF reflects sympathetic nervous activity and metabolic responses during incremental cycling exercise and has potential as an HRV index of sympathetic nervous activity during exercise.Trial registration: UMIN Japan identifier: UMIN000039639.


Assuntos
Sistema Nervoso Autônomo , Eletrocardiografia , Adulto , Humanos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo/fisiologia , Norepinefrina , Catecolaminas , Lactatos
12.
Neurosci Lett ; 734: 135083, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479857

RESUMO

Recently, the purine nucleoside inosine has been demonstrated to have several neuroprotective effects. Similarly, exercise training has well-known beneficial effects on mental health and cognitive function. Neuronal nitric oxide synthase (nNOS) is a key neuronal messenger in several brain regions, and the downregulation of nNOS has been shown to improve brain function. However, whether inosine and exercise training have combined effects on nNOS pathway-related proteins in the brain remains unknown. We found, for the first time, that inosine monophosphate (IMP), which is a precursor of inosine, decreases nNOS levels in the ventral hippocampus (vHp) and the cerebellum (Ce), but not in the dorsal hippocampus (dHp). In the vHp, the phosphorylation of cAMP response element-binding protein (CREB) was also upregulated, which negatively correlated with nNOS protein levels. In the cerebral cortex (Cx), no significant activation of the nNOS pathway was observed. In the dHp, vHp, Cx, and Ce, no interactions between the effects of IMP and exercise on nNOS protein and CREB phosphorylation levels were observed. The phosphorylation of nNOS was regulated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Although IMP induced minor changes in Akt phosphorylation, nNOS phosphorylation was unchanged by either IMP or exercise. In conclusion, in the vHp, which is associated with emotional behavior, IMP decreased nNOS levels and activated CREB, suggesting that IMP can elicit anxiolytic effects.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inosina Monofosfato/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Physiol ; 597(21): 5145-5159, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31490543

RESUMO

KEY POINTS: DNA methylation may play an important role in regulating gene expression in skeletal muscle to adapt to physical activity and inactivity. Neuronal nitric oxide synthase (nNOS) in skeletal muscle is a key regulator of skeletal muscle mass; however, it is unclear whether nNOS expression is regulated by DNA methylation. We found that 1 week of cast immobilization increased nNOS DNA methylation levels and downregulated nNOS gene expression in atrophic slow-twitch soleus muscle from the mouse leg. These changes were not detected in non-atrophic fast-twitch extensor digitorum longus muscle. Twelve hours of cast immobilization decreased nNOS gene expression, whereas nNOS DNA methylation levels were unchanged, suggesting that downregulation of nNOS gene expression by short-term muscle inactivity is independent of the DNA methylation pattern. These findings contribute to a better understanding of the maintenance of skeletal muscle mass and prevention of muscle atrophy by epigenetic mechanisms via the nNOS/NO pathway. ABSTRACT: DNA methylation is a mechanism that controls gene expression in skeletal muscle under various environmental stimuli, such as physical activity and inactivity. Neuronal nitric oxide synthase (nNOS) regulates muscle atrophy in skeletal muscle. However, the mechanisms regulating nNOS expression in atrophic muscle remain unclear. We hypothesized that nNOS expression in atrophic muscle is regulated by DNA methylation of the nNOS promotor in soleus (Sol; slow-twitch fibre dominant) and extensor digitorum longus (EDL; fast-twitch fibre dominant) muscles. One week of cast immobilization induced significant muscle atrophy in Sol but not in EDL. We showed that 1 week of cast immobilization increased nNOS DNA methylation levels in Sol, although only a minor change was detected in EDL. Consistent with the increased DNA methylation levels in atrophic Sol, the gene expression levels of total nNOS and nNOSµ (i.e. the major splicing variant of nNOS in skeletal muscle) decreased. The abundance of the nNOS protein and cell membrane (especially type IIa fibre) immunoreactivity also decreased in atrophic Sol. These changes were not observed in EDL after 1 week of cast immobilization. Furthermore, despite the lack of significant atrophy, 12 h of cast immobilization decreased gene expression levels of total nNOS and nNOSµ in Sol. However, no association was detected between nNOS DNA methylation and gene expression. The expression of the nNOSß gene, another splicing variant of nNOS, in EDL was unchanged by cast immobilization, whereas its expression was not detected in Sol. We concluded that chronic adaptation of nNOS gene expression in cast immobilized muscle may involve nNOS DNA methylation.


Assuntos
Metilação de DNA/genética , Músculo Esquelético/fisiologia , Óxido Nítrico Sintase Tipo I/genética , Regiões Promotoras Genéticas/genética , Animais , Membrana Celular/genética , Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Atrofia Muscular/genética
14.
Toxins (Basel) ; 11(9)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505765

RESUMO

Microcystins (MCs) are a group of cyclic heptapeptide hepatotoxins produced by Microcystis and several other genera of cyanobacteria. Many structural variants have been characterized using various methods such as liquid chromatography-mass spectrometry (LC-MS) analysis, enzyme-linked immunosorbent assay (ELISA) and protein phosphatase 2A (PP2A) inhibition assay. The representative MC, MC-LR, and related cyanobacterial toxins strongly inhibit PP2A activity and can therefore be assayed by measuring the extent of PP2A inhibition. However, these methods require reference toxin standards for the quantification and identification of known MCs. To obtain various MC-producing cyanobacterial strains, we surveyed and collected MC-producing cyanobacteria from environmental sources of water in Okinawa, Japan. Using a dual assay (LC-MS analysis and PP2A inhibition assay), we identified and isolated Microcystis strains producing five MC variants (MC-LR, -RR, -LA, -FR and -WR). Approximately 4 mg of MC-WR and -FR toxins were purified from the laboratory culture of the Microcystis isolate NIES-4344. Pure MC-WR and -FR variants were prepared for future use as toxin standards in LC-MS analysis. Phylogenetic analysis based on ftsZ revealed that the NIES-4344 strain belongs to the identified groups in Microcystis aeruginosa. This is the first report of Microcystis strains producing mainly MC-WR and -FR toxins in Japan.


Assuntos
Microcistinas/análise , Microcystis/isolamento & purificação , Poluentes da Água/isolamento & purificação , Animais , Linhagem Celular , Monitoramento Ambiental , Eutrofização , Água Doce/microbiologia , Insetos , Japão , Microcistinas/genética , Microcistinas/metabolismo , Microcystis/metabolismo , Filogenia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
15.
Clin Exp Nephrol ; 23(5): 621-628, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30729347

RESUMO

BACKGROUND: Acute exercise reduces renal blood flow (RBF). However, the effect of exercise intensity on RBF in patients with chronic kidney disease (CKD) stage 2 is not known. We investigated the association between RBF and exercise intensity in patients with CKD stage 2 using pulsed Doppler ultrasonography. METHODS: Eight men with CKD stage 2 (cystatin C-based estimate of glomerular filtration rate: 60-89 ml/min/1.73 m2) participated in this study. Using a bicycle ergometer, participants undertook a maximal graded exercise test (MGET) (experiment 1) and a multi-stage exercise test (experiment 2) to determine their lactate threshold (LT). Participants undertook a multi-stage exercise test for 4-min each. Workloads of 60%, 80%, 100%, 120%, and 140% of LT were used in experiment 3. RBF was measured by pulsed Doppler ultrasonography at rest, immediately after exercise, and 1 h after exercise in experiment 1, and at rest and immediately after each exercise bout in experiment 3. RESULTS: Renal blood flow after the MGET was 52% lower than at rest, and did not recover as well as after the exercise test. Cross-sectional area (CSA) was significantly lower after graded exercise. RBF tended to be lower at 100% of LT and was significantly lower at 120% of LT. CSA was significantly lower at 100% of LT. CONCLUSIONS: Renal blood flow does not change during exercise until the LT is reached. These findings may assist in making appropriate exercise recommendations to patients with CKD stage 2.


Assuntos
Exercício Físico/fisiologia , Circulação Renal , Insuficiência Renal Crônica/fisiopatologia , Idoso , Humanos , Masculino , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico por imagem , Ultrassonografia Doppler de Pulso
17.
Biochem Biophys Res Commun ; 507(1-4): 291-296, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30449601

RESUMO

Exercise is an effective tool for improving high-fat diet induced fat accumulation in the liver. However, the process of fat accumulation in the liver and the efficacy of early intervention with exercise remain unclear. The aim of this study was to investigate the short- and long-term effects of high-fat diet feeding and voluntary exercise on hepatic lipid metabolism in mice. Male C57BL/6J mice aged 6 weeks were randomly divided into two groups, the control group and high-fat diet feeding group, and fed a normal or high-fat diet for 12 weeks. After 6 weeks, mice in the high-fat diet feeding group were further divided into no exercise group and voluntary exercise training group, with mice in the exercise group provided a running wheel for 6 weeks. Body weight, food intake, and wheel rotation counts were measured every second day for 12 weeks. We found that voluntary exercise for 1 week (short-term exercise) significantly reduced fat accumulation in the liver by downregulating the expression of hepatic lipogenesis-associated proteins and upregulating the expression of hepatic lipolysis-associated proteins, as determined through western blotting and histology. Further, voluntary exercise for 6 weeks (long-term exercise) downregulated the expression of hepatic lipogenesis-associated proteins. These results suggest that hepatic lipogenesis and/or hepatic lipolysis mediate the beneficial effects of voluntary exercise on hepatic fat accumulation.


Assuntos
Dieta Hiperlipídica , Comportamento Alimentar , Metabolismo dos Lipídeos , Fígado/metabolismo , Condicionamento Físico Animal , Animais , Peso Corporal , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Fatores de Tempo
18.
Nitric Oxide ; 66: 71-77, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302517

RESUMO

Consumption of a high fat diet (HFD) and being overweight both induce functional deterioration and atrophy of the hippocampus. These alterations are associated with mental disorders such as depression and anxiety. Exercise combats obesity and enhances brain health. There is substantial evidence that neuronal nitric oxide synthase (nNOS) is a key regulator of affective behavior, and that increased brain nNOS leads to anxiety while environmental enrichment (EE), which reduces brain nNOS, has anxiolytic effects. In this study we investigated the effects of HFD with and without exercise on nNOS protein and gene expression levels in the brains of mice. Twelve weeks of HFD consumption increased body and mesenteric fat weight, as well as nNOS protein levels in the hippocampus and cerebral cortex. Six weeks of exercise training reduced body fat and rescued hippocampal and cortical nNOS expression levels in HFD-fed mice. Cerebellar nNOS expression was unaffected by HFD and exercise. Our results suggest that HFD-induced brain dysfunction may be regulated by hippocampal and/or cortical nNOS, and that exercise may have therapeutic potential for the treatment of HFD-induced depression and anxiety via the nNOS/NO pathway. In conclusion, exercise reverses HFD-induced changes in hippocampal and cortical nNOS protein levels in mice.


Assuntos
Córtex Cerebral/enzimologia , Dieta Hiperlipídica , Hipocampo/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo I/análise , Corrida/fisiologia
19.
Biochem Biophys Res Commun ; 476(4): 635-640, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27282485

RESUMO

Previous studies have shown that an enriched environment (EE) has an important effect on brain function via the neuronal nitric oxide synthase/nitric oxide (nNOS/NO) pathway in young and aged animals. However, whether EE induces its effect by altering nNOS expression levels and whether it lowers anxiety-like behaviors in aged mice remains unclear. Here, we show that nNOS expression levels increased with age in the hippocampus and cerebellum in aged mice, but not in the cortex. Moreover, EE reduced anxiety-like behaviors in aged mice and reduced nNOS expression levels in the cerebellum, but not in the cortex. The present study suggests that EE improves anxiety-like behaviors in aged mice by altering nNOS expression levels in the hippocampus or cerebellum.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Óxido Nítrico Sintase Tipo I/metabolismo , Envelhecimento/genética , Animais , Ansiedade/genética , Comportamento Animal , Cerebelo/enzimologia , Córtex Cerebral/enzimologia , Meio Ambiente , Expressão Gênica , Hipocampo/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo I/genética
20.
Biotechnol Rep (Amst) ; 11: 86-89, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28352544

RESUMO

Protein phosphatase 2A (PP2A) is an enzyme useful for detecting several natural toxins represented by okadaic acid and microcystins. We found that the production of the recombinant human PP2A catalytic subunit (rhPP2Ac) in High Five insect cells could markedly increase when the cells were cultured at 19 °C instead of 27 °C used under conventional conditions. The yield and purity of the enzyme increased four- and three-folds, respectively. The benefit of the altered culturing temperature was observed with the recombinant human protein phosphatase 2B but not 2Cα. The different responses among the enzymes suggest the involvement of an enzyme-specific mechanism that leads to the catalytic subunit overexpression. This is the first report to produce rhPP2Ac at a temperature lower than that used under conventional culture conditions (27 °C) used in the baculovirus expression system with High Five insect cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...