RESUMO
Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves as the key intermediate for the biosynthesis of 1 as well as many other meroterpenoids. Interestingly, the nonheme iron and α-ketoglutarate-dependent dioxygenase PrhA constructs the cycloheptadiene moiety to afford 2 from preaustinoid A1 (6), probably via the homoallyl-homoallyl radical rearrangement. Additionally, another fungal strain, P. brasilianum MG11, which produces acetoxydehydroaustin instead of 1, was found to have a gene cluster nearly identical to the prh cluster. The dioxygenase encoded by the cluster shares 92% sequence identity with PrhA, and also accepts 6 but produces preaustinoid A3 (17) with a spiro-lactone system, generating a diverging point for the two different meroterpenoid pathways in the same species.