Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36387367

RESUMO

Advanced glycation end products (AGEs) are formed via a nonenzymatic glycosylation reaction called glycation. The formation and accumulation of AGEs increases in skin with age, contributing to the appearance of facial wrinkles and loss of skin elasticity. Therefore, inhibition of AGEs may delay skin aging. The microalgae Parachlorella beijerinckii has been used as a health food supplement for many years and contains carotenoids and vitamins that have antioxidant and anti-inflammatory effects. The aim of this study was to investigate whether Chlorella extract also has antiglycation activity. Antiglycation activity was measured using fluorescent AGEs, Nε-(carboxymethyl) lysine (CML), and Nε-(carboxymethyl) arginine (CMA) from glycated bovine serum albumin and type I collagen in vitro. A gel with a dermis-like structure consisting of collagen and a live fibroblast cell line was glycated with glyoxal. The content of fluorescent AGE, CML, and CMA, and the gel contraction activity were measured. In addition, to investigate the level of inflammation induced by the glycation of the collagen gel, the expression level of the receptor for AGEs and interleukin-8 were examined. Fat-solubleChlorella extract suppressed the formation of fluorescent AGEs, CML, and CMA in both models. These results indicated that Chlorella extract directly inhibited AGE formation. The collagen gel contracted over time during culturing, whereas contraction was inhibited in the glyoxal-treated collagen gel. Chlorella extract remarkably attenuated the glyoxal-induced gel contraction. Moreover, Chlorella extract substantially decreased the fluorescent AGEs, CML, and CMA in the collagen gels with glyoxal. Glyoxal exposure increased the expression levels of interleukin-8 and receptor for AGE proteins in collagen gels, while Chlorella extract inhibited this increase. This study showed that fat-solubleChlorella extract has a direct inhibitory effect on AGEs and decreases receptor expression for AGE-mediated inflammation by reducing AGEs. Chlorella may delay skin aging by inhibiting the formation and accumulation of AGEs.

2.
Front Nutr ; 8: 763492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692754

RESUMO

The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the pathogenesis of a wide variety of human diseases. Although many drugs and inhibitors have been developed to treat NLRP3-associated diseases, only limited clinical data support their efficacy and safety. Chlorella, a unicellular green alga that is widely and safely used as a food supplement, contains various antioxidants. In this study, we obtained a fat-soluble extract from Chlorella (CE) and demonstrated that it reduced NLRP3 inflammasome activation by inhibiting mitochondrial reactive oxygen species and caspase-1 activation. In addition, CE supplementation attenuated lipopolysaccharide-induced interleukin 1ß transcription through activation of hypoxia-inducible factor 1α in vitro and in vivo. As Chlorella is a safe and useful food supplement, it may be a practical pharmacological approach for treating NLRP3-driven diseases.

3.
Front Immunol ; 12: 714897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421919

RESUMO

Psoriasis is a common immune-mediated, chronic, inflammatory skin disease that affects approximately 2-3% of the population worldwide. Although there is increasing evidence regarding the essential roles of the interleukin (IL)-23/IL-17 axis and dendritic cell (DC)-T cell crosstalk in the development of skin inflammation, the contributions of mitochondrial function to psoriasis are unclear. In a mouse model of imiquimod (IMQ)-induced psoriasiform skin inflammation, we found that hematopoietic cell-specific genetic deletion of p32/C1qbp, a regulator of mitochondrial protein synthesis and metabolism, protects mice from IMQ-induced psoriatic inflammation. Additionally, we demonstrate that p32/C1qbp is an important regulator of IMQ-induced DC activation, both in vivo and in vitro. We also found that p32/C1qbp-deficient DCs exhibited impaired production of IL-1ß, IL-23, and mitochondrial reactive oxygen species (mtROS) after IMQ stimulation. Because the inhibition of mtROS suppressed IMQ-induced DC activation and psoriatic inflammation, we presume that p32/C1qbp and mtROS can serve as therapeutic targets in psoriasis.


Assuntos
Suscetibilidade a Doenças , Mitocôndrias/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Potencial da Membrana Mitocondrial , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Psoríase/diagnóstico
4.
STAR Protoc ; 2(2): 100401, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33851138

RESUMO

Dendritic cell (DC) maturation induced by Toll-like receptor (TLR) agonists requires the activation of downstream metabolic changes. Here, we provide a detailed protocol to measure glycolysis, mitochondrial respiration, and fatty acid oxidation in mouse bone-marrow-derived DCs with the Seahorse XF24 extracellular flux (XF) analyzer. XF analysis with the Seahorse bioanalyzer has become a standard method to measure bioenergetic functions in cells, and this protocol can be adapted to other immune cells. For complete information on using this protocol, please refer to Gotoh et al. (2018).


Assuntos
Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Análise do Fluxo Metabólico/métodos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Ácidos Graxos/metabolismo , Glicólise/fisiologia , Masculino , Camundongos , Mitocôndrias/metabolismo
5.
iScience ; 23(11): 101654, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33103089

RESUMO

p32/C1qbp regulates mitochondrial protein synthesis and is essential for oxidative phosphorylation in mitochondria. Although dysfunction of p32/C1qbp impairs fetal development and immune responses, its role in hematopoietic differentiation remains unclear. Here, we found that mitochondrial dysfunction affected terminal differentiation of newly identified erythroid/B-lymphoid progenitors among CD45- Ter119- CD31- triple-negative cells (TNCs) in bone marrow. Hematopoietic cell-specific genetic deletion of p32/C1qbp (p32cKO) in mice caused anemia and B-lymphopenia without reduction of hematopoietic stem/progenitor cells. In addition, p32cKO mice were susceptible to hematopoietic stress with delayed recovery from anemia. p32/C1qbp-deficient CD51- TNCs exhibited impaired mitochondrial oxidation that consequently led to inactivation of mTORC1 signaling, which is essential for erythropoiesis. These findings uncover the importance of mitochondria, especially at the stage of TNCs during erythropoiesis, suggesting that dysregulation of mitochondrial protein synthesis is a cause of anemia and B-lymphopenia with an unknown pathology.

6.
Opt Lett ; 42(12): 2251-2254, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614324

RESUMO

A blue diode laser has a higher absorption rate than a traditional laser, while the maximum power is limited. We report the structure and laser beam profile of a 250 W high-power blue laser (445 nm) for material processing. The absorption rate of the blue laser system for the steel was 2.75 times that of a single-mode fiber laser system (1070 nm). The characteristics of the steel after laser irradiation were determined, validating the potential of this high-power blue laser for material processing, such as heat treatment and cladding. The cost of the developed laser system was lower than that of the existing one. To the best of our knowledge, this is the first blue laser with a power as high as 250 W.

7.
Free Radic Biol Med ; 108: 300-310, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315451

RESUMO

Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA.


Assuntos
Senilidade Prematura/metabolismo , Queratinócitos/efeitos da radiação , Luz/efeitos adversos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Pele/efeitos da radiação , Senilidade Prematura/etiologia , Animais , Células Cultivadas , Humanos , Queratinócitos/fisiologia , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Oxirredução , Pele/patologia , Superóxidos/química , Superóxidos/metabolismo
8.
BMC Complement Altern Med ; 14: 390, 2014 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-25305781

RESUMO

BACKGROUND: Oxidative stress is involved in age-related muscle atrophy, such as sarcopenia. Since Chlorella, a unicellular green alga, contains various antioxidant substances, we used a mouse model of enhanced oxidative stress to investigate whether Chlorella could prevent muscle atrophy. METHODS: Aldehyde dehydrogenase 2 (ALDH2) is an anti-oxidative enzyme that detoxifies reactive aldehydes derived from lipid peroxides such as 4-hydroxy-2-nonenal (4-HNE). We therefore used transgenic mice expressing a dominant-negative form of ALDH2 (ALDH2*2 Tg mice) to selectively decrease ALDH2 activity in the muscles. To evaluate the effect of Chlorella, the mice were fed a Chlorella-supplemented diet (CSD) for 6 months. RESULTS: ALDH2*2 Tg mice exhibited small body size, muscle atrophy, decreased fat content, osteopenia, and kyphosis, accompanied by increased muscular 4-HNE levels. The CSD helped in recovery of body weight, enhanced oxidative stress, and increased levels of a muscle impairment marker, creatine phosphokinase (CPK) induced by ALDH2*2. Furthermore, histological and histochemical analyses revealed that the consumption of the CSD improved skeletal muscle atrophy and the activity of the mitochondrial cytochrome c oxidase. CONCLUSIONS: This study suggests that long-term consumption of Chlorella has the potential to prevent age-related muscle atrophy.


Assuntos
Aldeído Desidrogenase/deficiência , Chlorella/química , Chlorella/metabolismo , Mitocôndrias/enzimologia , Músculo Esquelético/enzimologia , Atrofia Muscular/prevenção & controle , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular/dietoterapia , Atrofia Muscular/enzimologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
9.
J Oleo Sci ; 62(10): 773-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24088514

RESUMO

Chlorella contains a high amount of carotenoids, especially lutein, and has received attention as a possible dietary source for improving carotenoid levels in human blood. In the present study, we performed a 2-month single arm human study, and investigated the efficacy of Chlorella supplementation (9 g Chlorella/day; equivalent to 32 mg lutein/day) on lutein and other carotenoid concentrations in plasma as well as erythrocytes of 12 healthy subjects. Following Chlorella supplementation, lutein was the predominant carotenoid in erythrocytes, showing a 4-fold increase (from 14 to 54 pmol/mL packed cells). After the one month without Chlorella ingestion, erythrocyte lutein then decreased to a basal level (17 pmol/mL packed cells). Erythrocyte carotenoid (lutein, zeaxanthin, α-carotene, and ß-carotene) levels were proportional to plasma carotenoid levels. The results suggest the transfer of Chlorella carotenoids, especially lutein, from plasma lipoprotein particles to the erythrocyte membrane. Chlorella intake would be effective for improving and maintaining lutein concentrations in human erythrocytes.


Assuntos
Chlorella , Suplementos Nutricionais , Eritrócitos/metabolismo , Luteína/sangue , Fitoterapia , Preparações de Plantas/administração & dosagem , Carotenoides/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Comprimidos
10.
Neurosci Lett ; 464(3): 193-8, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19699777

RESUMO

Oxidative stress is one of the major causes of age-dependent memory loss and cognitive decline. Cytotoxic aldehydes are derived from lipid peroxides and their accumulation may be responsible for age-dependent neurodegeneration, including Alzheimer's disease. Since aldehyde dehydrogenases detoxify such aldehydes, we constructed transgenic mice with mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity deficiency (DAL101 mice) as an age-dependent dementia model. This model animal is age-dependently progressed by persistent oxidative stress, and thus enables us to investigate foods that prevent dementia. Since Chlorella, a kind of alga, exhibits various anti-oxidative effects, we investigated whether Chlorella has the potential to prevent age-dependent cognitive impairment. We fed Chlorella to DAL101 mice and investigated its effects on oxidative stress and the progression of cognitive decline using the Morris water-maze and object recognition tests. The diet with Chlorella tended to reduce oxidative stress and significantly prevented the decline of cognitive ability, as shown by both methods. Moreover, consumption of Chlorella decreased the number of activated astrocytes in the DAL101 brain. These findings suggest that the prolonged consumption of Chlorella has the potential to prevent the progression of cognitive impairment.


Assuntos
Envelhecimento , Chlorella , Transtornos Cognitivos/prevenção & controle , Demência/prevenção & controle , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Contagem de Células , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Demência/metabolismo , Demência/psicologia , Dieta , Modelos Animais de Doenças , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Reconhecimento Psicológico , Percepção Espacial
11.
Anal Chem ; 76(11): 3222-8, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15167805

RESUMO

A novel concept for assembling various chemical functions onto a single microfluidic device is proposed. The concept, called a capillary-assembled microchip, involves embedding chemically functionalized capillaries into a lattice microchannel network fabricated on poly(dimethylsiloxane) (PDMS). The network has the same channel dimensions as the outer dimensions of the capillaries. In this paper, we focus on square capillaries to be embedded into a PDMS microchannel network having a square cross section. The combination of hard glass square capillary and soft square PDMS channel allows successful fabrication of a microfluidic device without any solution leakage, and which can use diffusion-based two-solution mixing. Two different types of chemically modified capillaries, an ion-sensing capillary and a pH-sensing capillary, are prepared by coating a hydrophobic plasticized poly(vinyl chloride) membrane and a hydrophilic poly(ethyleneglycol) membrane containing functional molecules onto the inner surface of capillaries. Then, they are cut into appropriate lengths and arranged on a single microchip to prepare a dual-analyte sensing system. The concept proposed here offers advantages inherent to using a planar microfluidic device and of chemical functionality of immobilized molecules. Therefore, we expect to fabricate various types of chemically functionalized microfluidic devices soon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...