Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yakugaku Zasshi ; 142(5): 479-485, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35491153

RESUMO

Three-dimensional structural information is indispensable to understand the function of proteins in living organisms and X-ray crystallography plays a major role in determining the three-dimensional structure. X-ray free-electron laser (XFEL), which is intense and femtosecond X-ray pulses, enables us to obtain X-ray diffraction intensity data before the destruction of protein molecules, and is expected to be a technology to obtain dynamic structural information. This year marks the 10th anniversary of SPring-8 Angstrom Compact Free Electron Laser (SACLA), Japan's X-ray free electron laser facility. In this review, I describe the damage-free crystal structure analysis, de novo crystal structure determination using single wavelength anomalous dispersion by serial femtosecond crystallography (SFX), and time-resolved X-ray crystallography that have been performed at SACLA.


Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Proteínas/química , Difração de Raios X , Raios X
2.
IUCrJ ; 9(Pt 1): 134-145, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35059217

RESUMO

CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open-close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 mono-acyl-glycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hy-droxy-propyl methyl-cellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Šis reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.

3.
Protein Sci ; 30(5): 1064-1071, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33683740

RESUMO

CmABCB1 is a homologue of human P-glycoprotein, which extrudes various substrates by iterative cycles of conformational changes between the inward- and outward-facing states. Comparison of the inward- and outward-facing structures of CmABCB1 suggested that pivotal joints in the transmembrane domain regulate the tilt of transmembrane helices. Transmembrane helix 1 (TM1) forms a tight helix-helix contact with TM3 at the TM1-3 joint. Mutation of Gly132 to valine at the TM1-3 joint, G132V, caused a 10-fold increase in ATPase activity, but the mechanism underlying this change remains unclear. Here, we report a crystal structure of the outward-facing state of the CmABCB1 G132V mutant at a 2.15 Å resolution. We observed structural displacements between the outward-facing states of G132V and the previous one at the region around the TM1-3 joint, and a significant expansion at the extracellular gate. We hypothesize that steric hindrance caused by the Val substitution shifted the conformational equilibrium toward the outward-facing state, favoring the dimeric state of the nucleotide-binding domains and thereby increasing the ATPase activity of the G132V mutant.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Mutação de Sentido Incorreto , Rodófitas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Substituição de Aminoácidos , Cristalografia por Raios X , Estrutura Secundária de Proteína , Rodófitas/genética
4.
FEBS Lett ; 595(6): 707-716, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275773

RESUMO

ABCB1, also called MDR1 or P-glycoprotein, exports various hydrophobic compounds and plays an essential role as a protective physiological barrier in several organs, including the brain, testis, and placenta. However, little is known about the structural mechanisms that allow ABCB1 to recognize hydrophobic compounds of diverse structures or the coupling of ATP hydrolysis to uphill substrate export. High-resolution X-ray crystal structures of the pre- and post-transport states and FRET analyses in living cells have revealed that an aromatic hydrophobic network at the top of the inner cavity is key for the conformational change in ABCB1 that is triggered by a hydrophobic substrate. ATP binding, but not hydrolysis, induces a progressive network that results in a twisting motion of the whole protein, squeezing out the substrate directly to the extracellular space. This twist-and-squeeze mechanism by which ABCB1 exports hydrophobic substrates is distinct from those of other transporters.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas
5.
Nat Commun ; 10(1): 88, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622258

RESUMO

P-glycoprotein extrudes a large variety of xenobiotics from the cell, thereby protecting tissues from their toxic effects. The machinery underlying unidirectional multidrug pumping remains unknown, largely due to the lack of high-resolution structural information regarding the alternate conformational states of the molecule. Here we report a pair of structures of homodimeric P-glycoprotein: an outward-facing conformational state with bound nucleotide and an inward-facing apo state, at resolutions of 1.9 Å and 3.0 Å, respectively. Features that can be clearly visualized at this high resolution include ATP binding with octahedral coordination of Mg2+; an inner chamber that significantly changes in volume with the aid of tight connections among transmembrane helices (TM) 1, 3, and 6; a glutamate-arginine interaction that stabilizes the outward-facing conformation; and extensive interactions between TM1 and TM3, a property that distinguishes multidrug transporters from floppases. These structural elements are proposed to participate in the mechanism of the transporter.


Assuntos
Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Domínios Proteicos/genética , Rodófitas , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Cristalografia por Raios X , Ensaios Enzimáticos , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
ACS Appl Bio Mater ; 2(11): 4941-4952, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021494

RESUMO

In cellulo crystallization is a developing technique to provide crystals for protein structure determination, particularly for proteins that are difficult to prepare by in vitro crystallization. This method has a key advantage: it requires neither a protein purification step nor a crystallization step. However, there is still no systematic strategy for improving the technique of in cellulo crystallization because the process occurs spontaneously. Here we report a protocol to produce and extract in cellulo crystals of human lysosomal neuraminidase-1 (NEU1) in human cultured cells. Overexpression of NEU1 protein by the retransfection of cells pretransfected with neu1-overexpressing plasmid improved the efficiency of NEU1 crystallization. Microscopic analysis revealed that NEU1 proteins were not crystallized in the lysosome but in the endoplasmic reticulum (ER). Screening of the buffer conditions used to extract crystals from cells further improved the crystal yield. The optimal pH was 7.0, which corresponds to the pH in the ER. Use of a high-yield flask with a large surface area also yielded more crystals. These optimizations enabled us to execute a serial femtosecond crystallography experiment with a sufficient number of crystals to generate a complete data set. Optimization of the in cellulo crystallization method was thus shown to be possible.

7.
IUCrJ ; 4(Pt 5): 639-647, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989719

RESUMO

Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Šwavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.

8.
Sci Rep ; 7(1): 703, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386083

RESUMO

Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images.

9.
J Synchrotron Radiat ; 24(Pt 1): 29-41, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009544

RESUMO

Serial crystallography, in which single-shot diffraction images are collected, has great potential for protein microcrystallography. Although serial femtosecond crystallography (SFX) has been successfully demonstrated, limited beam time prevents its routine use. Inspired by SFX, serial synchrotron crystallography (SSX) has been investigated at synchrotron macromolecular crystallography beamlines. Unlike SFX, the longer exposure time of milliseconds to seconds commonly used in SSX causes radiation damage. However, in SSX, crystals can be rotated during the exposure, which can achieve efficient coverage of the reciprocal space. In this study, mercury single-wavelength anomalous diffraction (Hg-SAD) phasing of the luciferin regenerating enzyme (LRE) was performed using serial synchrotron rotation crystallography. The advantages of rotation and influence of dose on the data collected were evaluated. The results showed that sample rotation was effective for accurate data collection, and the optimum helical rotation step depended on multiple factors such as multiplicity and partiality of reflections, exposure time per rotation angle and the contribution from background scattering. For the LRE microcrystals, 0.25° was the best rotation step for the achievable resolution limit, whereas a rotation step larger than or equal to 1° was favorable for Hg-SAD phasing. Although an accumulated dose beyond 1.1 MGy caused specific damage at the Hg site, increases in resolution and anomalous signal were observed up to 3.4 MGy because of a higher signal-to-noise ratio.

10.
Proc Natl Acad Sci U S A ; 113(11): 2928-33, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929369

RESUMO

Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.


Assuntos
Alcaligenes faecalis/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Nitrito Redutases/química , Alcaligenes faecalis/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cobre/química , Cristalografia por Raios X/instrumentação , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Mutação Puntual , Conformação Proteica , Prótons , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2519-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627659

RESUMO

Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Šis successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.


Assuntos
Cloro/química , Cristalografia por Raios X/métodos , Muramidase/química , Enxofre/química , Motivos de Aminoácidos , Animais , Galinhas , Clara de Ovo/química , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Sci Rep ; 5: 14017, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26360462

RESUMO

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement methods. Here we employed single isomorphous replacement with anomalous scattering (SIRAS) for phasing and demonstrate successful application to SFX de novo phasing. Only about 20,000 patterns in total were needed for SIRAS phasing while single wavelength anomalous dispersion (SAD) phasing was unsuccessful with more than 80,000 patterns of derivative crystals. We employed high energy X-rays from SACLA (12.6 keV) to take advantage of the large anomalous enhancement near the LIII absorption edge of Hg, which is one of the most widely used heavy atoms for phasing in conventional protein crystallography. Hard XFEL is of benefit for de novo phasing in the use of routinely used heavy atoms and high resolution data collection.


Assuntos
Cristalografia por Raios X , Modelos Moleculares , Proteínas/química
13.
Bioorg Med Chem Lett ; 25(18): 3910-3, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235953

RESUMO

Fructosyl peptide oxidases (FPOXs) play a crucial role in the diagnosis of diabetes. Their main function is to cleave fructosyl amino acids or fructosyl peptides into glucosone and the corresponding amino acids/dipeptides. In this study, the substrate-analog FPOX inhibitors 1a-c were successfully designed and synthesized. These inhibitors mimic N(α)-fructosyl-L-valine (Fru-Val), [N(α)-fructosyl-L-valyl]-L-histidine (Fru-ValHis), and N(ε)-fructosyl-L-lysine (εFru-Lys), respectively. The secondary nitrogen atom in the natural substrates, linking fructose and amino acid or dipeptide moieties, was substituted in 1a-c with a sulfur atom to avoid enzymatic cleavage. Kinetic studies revealed that 1a-c act as competitive inhibitors against an FPOX obtained from Coniochaeta sp., and Ki values of 11.1, 66.8, and 782 µM were obtained for 1a-c, respectively.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Lisina/análogos & derivados , Valina/análogos & derivados , Aminoácido Oxirredutases/metabolismo , Ascomicetos/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Cinética , Lisina/síntese química , Lisina/química , Lisina/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Valina/síntese química , Valina/química , Valina/farmacologia
14.
J Biol Chem ; 289(24): 16826-34, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24753293

RESUMO

ß-Primeverosidase (PD) is a disaccharide-specific ß-glycosidase in tea leaves. This enzyme is involved in aroma formation during the manufacturing process of oolong tea and black tea. PD hydrolyzes ß-primeveroside (6-O-ß-d-xylopyranosyl-ß-d-glucopyranoside) at the ß-glycosidic bond of primeverose to aglycone, and releases aromatic alcoholic volatiles of aglycones. PD only accepts primeverose as the glycone substrate, but broadly accepts various aglycones, including 2-phenylethanol, benzyl alcohol, linalool, and geraniol. We determined the crystal structure of PD complexes using highly specific disaccharide amidine inhibitors, N-ß-primeverosylamidines, and revealed the architecture of the active site responsible for substrate specificity. We identified three subsites in the active site: subsite -2 specific for 6-O-ß-d-xylopyranosyl, subsite -1 well conserved among ß-glucosidases and specific for ß-d-glucopyranosyl, and wide subsite +1 for hydrophobic aglycone. Glu-470, Ser-473, and Gln-477 act as the specific hydrogen bond donors for 6-O-ß-d-xylopyranosyl in subsite -2. On the other hand, subsite +1 was a large hydrophobic cavity that accommodates various aromatic aglycones. Compared with aglycone-specific ß-glucosidases of the glycoside hydrolase family 1, PD lacks the Trp crucial for aglycone recognition, and the resultant large cavity accepts aglycone and 6-O-ß-d-xylopyranosyl together. PD recognizes the ß-primeverosides in subsites -1 and -2 by hydrogen bonds, whereas the large subsite +1 loosely accommodates various aglycones. The glycone-specific activity of PD for broad aglycone substrates results in selective and multiple release of temporally stored alcoholic volatile aglycones of ß-primeveroside.


Assuntos
Dissacarídeos/química , Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Sequência de Aminoácidos , Camellia sinensis/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 111(11): 4049-54, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591620

RESUMO

P-glycoprotein is an ATP-binding cassette multidrug transporter that actively transports chemically diverse substrates across the lipid bilayer. The precise molecular mechanism underlying transport is not fully understood. Here, we present crystal structures of a eukaryotic P-glycoprotein homolog, CmABCB1 from Cyanidioschyzon merolae, in two forms: unbound at 2.6-Å resolution and bound to a unique allosteric inhibitor at 2.4-Å resolution. The inhibitor clamps the transmembrane helices from the outside, fixing the CmABCB1 structure in an inward-open conformation similar to the unbound structure, confirming that an outward-opening motion is required for ATP hydrolysis cycle. These structures, along with site-directed mutagenesis and transporter activity measurements, reveal the detailed architecture of the transporter, including a gate that opens to extracellular side and two gates that open to intramembranous region and the cytosolic side. We propose that the motion of the nucleotide-binding domain drives those gating apparatuses via two short intracellular helices, IH1 and IH2, and two transmembrane helices, TM2 and TM5.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Descoberta de Drogas/métodos , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Neoplasias/tratamento farmacológico , Conformação Proteica , Rodófitas/química , Trifosfato de Adenosina/metabolismo , Cristalografia , Ativação do Canal Iônico/genética , Pichia , Saccharomyces cerevisiae , Difração de Raios X
16.
Sci Rep ; 3: 2490, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970036

RESUMO

Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and four site-directed mutant luciferases. While the mutation caused different emission spectra, the spectra differed only in the intensity of the green component (λmax ~ 560 nm). In contrast, the orange (λmax ~ 610 nm) and red (λmax ~ 650 nm) components present in all the spectra were almost unaffected by the modifications to the luciferases and changes in pH. Our results reveal that the intensity of the green component is the unique factor that is influenced by the luciferase structure and other reaction conditions.


Assuntos
Cor , Vaga-Lumes/enzimologia , Vaga-Lumes/genética , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Animais , Luciferases de Vaga-Lume/análise , Medições Luminescentes , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade
17.
Nat Struct Mol Biol ; 20(8): 987-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23812376

RESUMO

Appropriate targeting of matrix proteins to peroxisomes is mainly directed by two types of peroxisomal targeting signals, PTS1 and PTS2. Although the basis of PTS1 recognition has been revealed by structural studies, that of PTS2 recognition remains elusive. Here we present the crystal structure of a heterotrimeric PTS2-recognition complex from Saccharomyces cerevisiae, containing Pex7p, the C-terminal region of Pex21p and the PTS2 of the peroxisomal 3-ketoacyl-CoA thiolase. Pex7p forms a ß-propeller structure and provides a platform for cooperative interactions with both the amphipathic PTS2 helix and Pex21p. The C-terminal region of Pex21p directly covers the hydrophobic surfaces of both Pex7p and PTS2, and the resulting hydrophobic core is the primary determinant of stable complex formation. Together with in vivo and in vitro functional assays of Pex7p and Pex21p variants, our findings reveal the molecular mechanism of PTS2 recognition.


Assuntos
Proteínas de Transporte/química , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte/metabolismo , Cristalização , Complexos Multiproteicos/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-23385752

RESUMO

Fructosyl peptide oxidase (FPOX) catalyses the oxidation of α-glycated dipeptides such as N(α)-(1-deoxy-D-fructos-1-yl)-L-valyl-L-histidine (Fru-ValHis) and is used in the diagnosis of diabetes mellitus. Here, two thermostable mutants of FPOX, CFP-T7 and EFP-T5M, were crystallized by the sitting-drop vapour-diffusion method. The crystal of CFP-T7 belonged to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 110.09, c = 220.48 Å, and that of EFP-T5M belonged to the monoclinic space group P2(1), with unit-cell parameters a = 43.00, b = 230.05, c = 47.27 Å, ß = 116.99°. The crystals of CFP-T7 and EFP-T5M diffracted to 1.8 and 1.6 Å resolution, respectively.


Assuntos
Aminoácido Oxirredutases/química , Eupenicillium/enzimologia , Eurotiales/enzimologia , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida
19.
Artigo em Inglês | MEDLINE | ID: mdl-22750857

RESUMO

Pz peptidase B is an intracellular M3 metallopeptidase that is found together with Pz peptidase A in the thermophile Geobacillus collagenovorans MO-1 and recognizes collagen-specific tripeptide units (-Gly-Pro-X-). These peptidases have low homology in their primary structures; however, their cleavage patterns towards peptide substrates are similar. In this work, Pz peptidase B was crystallized using the counter-diffusion method. Data were collected to a resolution of 1.6 Šat 100 K from a crystal obtained in the Japanese Experiment Module (JEM; also known as `Kibo') at the International Space Station (ISS). The crystal belonged to the trigonal space group P3(1)21, with unit-cell parameters a = b = 87.64, c = 210.5 Å. A complete data set was also obtained from crystals of selenomethionine-substituted protein.


Assuntos
Geobacillus/enzimologia , Peptídeo Hidrolases/química , Cristalização , Cristalografia por Raios X
20.
EMBO J ; 29(24): 4083-93, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21102411

RESUMO

Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an α-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis.


Assuntos
Lipoproteínas/química , Lipoproteínas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Peroxinas , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...