Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400301, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531113

RESUMO

Due to promising functionalities that may dramatically enhance spintronics performance, antiferromagnets are the subject of intensive research for developing the next-generation active elements to replace ferromagnets. In particular, the recent experimental demonstration of tunneling magnetoresistance and electrical switching using chiral antiferromagnets has sparked expectations for the practical integration of antiferromagnetic materials into device architectures. To further develop the technology to manipulate the magnetic anisotropies in all-antiferromagnetic devices, it is essential to realize exchange bias through the interface between antiferromagnetic multilayers. Here, the first observation on the omnidirectional exchange bias at an all-antiferromagnetic polycrystalline heterointerface is reported. This experiment demonstrates that the interfacial energy causing the exchange bias between the chiral-antiferromagnet Mn3Sn/collinear-antiferromagnet MnN layers is comparable to those found at the conventional ferromagnet/antiferromagnet interface at room temperature. In sharp contrast with previous reports using ferromagnets, the magnetic field control of the unidirectional anisotropy is found to be omnidirectional due to the absence of the shape anisotropy in the antiferromagnetic multilayer. The realization of the omnidirectional exchange bias at the interface between polycrystalline antiferromagnets on amorphous templates, highly compatible with existing Si-based devices, paves the way for developing ultra-low power and ultra-high speed memory devices based on antiferromagnets.

2.
Phys Rev Lett ; 132(6): 066003, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394590

RESUMO

Resonant ultrasound spectroscopy (RUS) is a powerful technique for measuring the full elastic tensor of a given material in a single experiment. Previously, this technique was practically limited to regularly shaped samples such as rectangular parallelepipeds, spheres, and cylinders [W. M. Visscher et al. J. Acoust. Soc. Am. 90, 2154 (1991)JASMAN0001-496610.1121/1.401643]. We demonstrate a new method for determining the elastic moduli of irregularly shaped samples, extending the applicability of RUS to a much larger set of materials. We apply this new approach to the recently discovered unconventional superconductor UTe_{2} and provide its elastic tensor at both 300 and 4 kelvin.

3.
Adv Mater ; 35(38): e2303416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343181

RESUMO

The anomalous Nernst effect (ANE) converts heat flux perpendicular to the plane into electricity, in sharp contrast with the Seebeck effect (SE), enabling mass production, large area, and flexibility of their devices through ordinary thin-film fabrication techniques. Heat flux sensors, one of the most promising applications of ANE, are powerful devices for evaluating heat flow and can lead to energy savings through efficient thermal management. In reality, however, SE caused by the in-plane heat flux is always superimposed on the measurement signal, making it difficult to evaluate the perpendicular heat flux. Here, ANE-type heat flux sensors that selectively detect a perpendicular heat flux are fabricated by adjusting the net Seebeck coefficient in their thermopile circuit with mass-producible roll-to-roll sputtering methods. The direct sensing of perpendicular heat flux using ANE-based flexible thermopiles, as well as their simple fabrication process, paves the way for the practical application of thin-film thermoelectric devices.

4.
Phys Rev Lett ; 130(12): 126302, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027855

RESUMO

We investigate ultrafast dynamics of the anomalous Hall effect (AHE) in the topological antiferromagnet Mn_{3}Sn with sub-100 fs time resolution. Optical pulse excitations largely elevate the electron temperature up to 700 K, and terahertz probe pulses clearly resolve ultrafast suppression of the AHE before demagnetization. The result is well reproduced by microscopic calculation of the intrinsic Berry-curvature mechanism while the extrinsic contribution is clearly excluded. Our work opens a new avenue for the study of nonequilibrium AHE to identify the microscopic origin by drastic control of the electron temperature by light.

5.
Science ; 379(6635): 908-912, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862771

RESUMO

Understanding the strange metallic behavior that develops at the brink of localization in quantum materials requires probing the underlying electronic charge dynamics. Using synchrotron radiation-based Mössbauer spectroscopy, we studied the charge fluctuations of the strange metal phase of ß-YbAlB4 as a function of temperature and pressure. We found that the usual single absorption peak in the Fermi-liquid regime splits into two peaks upon entering the critical regime. We interpret this spectrum as a single nuclear transition, modulated by nearby electronic valence fluctuations whose long time scales are further enhanced by the formation of charged polarons. These critical charge fluctuations may prove to be a distinct signature of strange metals.

6.
Nature ; 613(7944): 490-495, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653566

RESUMO

The tunnelling electric current passing through a magnetic tunnel junction (MTJ) is strongly dependent on the relative orientation of magnetizations in ferromagnetic electrodes sandwiching an insulating barrier, rendering efficient readout of spintronics devices1-5. Thus, tunnelling magnetoresistance (TMR) is considered to be proportional to spin polarization at the interface1 and, to date, has been studied primarily in ferromagnets. Here we report observation of TMR in an all-antiferromagnetic tunnel junction consisting of Mn3Sn/MgO/Mn3Sn (ref. 6). We measured a TMR ratio of around 2% at room temperature, which arises between the parallel and antiparallel configurations of the cluster magnetic octupoles in the chiral antiferromagnetic state. Moreover, we carried out measurements using a Fe/MgO/Mn3Sn MTJ and show that the sign and direction of anisotropic longitudinal spin-polarized current in the antiferromagnet7 can be controlled by octupole direction. Strikingly, the TMR ratio (about 2%) of the all-antiferromagnetic MTJ is much larger than that estimated using the observed spin polarization. Theoretically, we found that the chiral antiferromagnetic MTJ may produce a substantially large TMR ratio as a result of the time-reversal, symmetry-breaking polarization characteristic of cluster magnetic octupoles. Our work lays the foundation for the development of ultrafast and efficient spintronic devices using antiferromagnets8-10.

7.
Nat Commun ; 13(1): 4604, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933516

RESUMO

It has become common knowledge that phonons can generate thermal Hall effect in a wide variety of materials, although the underlying mechanism is still controversial. We study longitudinal κxx and transverse κxy thermal conductivity in Pr2Ir2O7, which is a metallic analog of spin ice. Despite the presence of mobile charge carriers, we find that both κxx and κxy are dominated by phonons. A T/H scaling of κxx unambiguously reveals that longitudinal heat current is substantially impeded by resonant scattering of phonons on paramagnetic spins. Upon cooling, the resonant scattering is strongly affected by a development of spin ice correlation and κxx deviates from the scaling in an anisotropic way with respect to field directions. Strikingly, a set of the κxx and κxy data clearly shows that κxy correlates with κxx in its response to magnetic field including a success of the T/H scaling and its failure at low temperature. This remarkable correlation provides solid evidence that an indispensable role is played by spin-phonon scattering not only for hindering the longitudinal heat conduction, but also for generating the transverse response.

8.
Nature ; 607(7919): 474-479, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859198

RESUMO

Electrical control of a magnetic state of matter lays the foundation for information technologies and for understanding of spintronic phenomena. Spin-orbit torque provides an efficient mechanism for the electrical manipulation of magnetic orders1-11. In particular, spin-orbit torque switching of perpendicular magnetization in nanoscale ferromagnetic bits has enabled the development of stable, reliable and low-power memories and computation12-14. Likewise, for antiferromagnetic spintronics, electrical bidirectional switching of an antiferromagnetic order in a perpendicular geometry may have huge impacts, given its potential advantage for high-density integration and ultrafast operation15,16. Here we report the experimental realization of perpendicular and full spin-orbit torque switching of an antiferromagnetic binary state. We use the chiral antiferromagnet Mn3Sn (ref. 17), which exhibits the magnetization-free anomalous Hall effect owing to a ferroic order of a cluster magnetic octupole hosted in its chiral antiferromagnetic state18. We fabricate heavy-metal/Mn3Sn heterostructures by molecular beam epitaxy and introduce perpendicular magnetic anisotropy of the octupole using an epitaxial in-plane tensile strain. By using the anomalous Hall effect as the readout, we demonstrate 100 per cent switching of the perpendicular octupole polarization in a 30-nanometre-thick Mn3Sn film with a small critical current density of less than 15 megaamperes per square centimetre. Our theory reveals that the perpendicular geometry between the polarization directions of current-induced spin accumulation and of the octupole persistently maximizes the spin-orbit torque efficiency during the deterministic bidirectional switching process. Our work provides a significant basis for antiferromagnetic spintronics.

9.
Nat Commun ; 13(1): 2141, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440657

RESUMO

Intermetallic compounds containing f-electron elements have been prototypical materials for investigating strong electron correlations and quantum criticality (QC). Their heavy fermion ground state evoked by the magnetic f-electrons is susceptible to the onset of quantum phases, such as magnetism or superconductivity, due to the enhanced effective mass (m*) and a corresponding decrease of the Fermi temperature. However, the presence of f-electron valence fluctuations to a non-magnetic state is regarded an anathema to QC, as it usually generates a paramagnetic Fermi-liquid state with quasiparticles of moderate m*. Such systems are typically isotropic, with a characteristic energy scale T0 of the order of hundreds of kelvins that require large magnetic fields or pressures to promote a valence or magnetic instability. Here we show the discovery of a quantum critical behaviour and a Lifshitz transition under low magnetic field in an intermediate valence compound α-YbAlB4. The QC origin is attributed to the anisotropic hybridization between the conduction and localized f-electrons. These findings suggest a new route to bypass the large valence energy scale in developing the QC.

10.
Sci Adv ; 8(2): eabk1480, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030028

RESUMO

Anomalous Nernst effect (ANE), converting a heat flow to transverse electric voltage, originates from the Berry phase of electronic wave function near the Fermi energy EF. Thus, the ANE provides a sensitive probe to detect a topological state that produces large Berry curvature. In addition, a magnet that exhibits a large ANE using low-cost and safe elements will be useful to develop a novel energy harvesting technology. Here, we report our observation of a high ANE exceeding 3 microvolts per kelvin above room temperature in the kagome ferromagnet Fe3Sn with the Curie temperature of 760 kelvin. Our theoretical analysis clarifies that a "nodal plane" produces a flat hexagonal frame with strongly enhanced Berry curvature, resulting in the large ANE. Our discovery of the large ANE in Fe3Sn opens the path for the previously unexplored functionality of flat degenerate electronic states and for developing flexible film thermopile and heat current sensors.

11.
Nat Commun ; 12(1): 6491, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795211

RESUMO

Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

12.
Nat Commun ; 12(1): 5582, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552070

RESUMO

Recently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn3X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn3Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.

13.
Nat Commun ; 12(1): 1377, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654070

RESUMO

Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7 lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7 and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatial nanoscale patterns display a fractal geometry with power-law behavior extended over two decades, consistent with being in proximity to a critical point. Our discovery reveals a nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.

14.
Nat Commun ; 12(1): 572, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495448

RESUMO

The recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn3X (X = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovation. These effects are considered fingerprints of Weyl nodes residing near the Fermi energy, promoting Mn3X (X = Sn, Ge) as a fascinating platform to explore the elusive magnetic Weyl fermions. In this review, we provide recent updates on the insights drawn from experimental and theoretical studies of Mn3X (X = Sn, Ge) by combining previous reports with our new, comprehensive set of transport measurements of high-quality Mn3Sn and Mn3Ge single crystals. In particular, we report magnetotransport signatures specific to chiral anomalies in Mn3Ge and planar Hall effect in Mn3Sn, which have not yet been found in earlier studies. The results summarized here indicate the essential role of magnetic Weyl fermions in producing the large transverse responses in the absence of magnetization.

15.
Phys Rev Lett ; 125(19): 197201, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216581

RESUMO

NiGa_{2}S_{4} is a triangular lattice S=1 system with strong two dimensionality of the lattice, actively discussed as a candidate to host spin-nematic order brought about by strong quadrupole coupling. Using Raman scattering spectroscopy we identify a phonon of E_{g} symmetry which can modulate magnetic exchange J_{1} and produce quadrupole coupling. Additionally, our Raman scattering results demonstrate a loss of local inversion symmetry on cooling, which we associate with sulfur vacancies. This will lead to disordered Dzyaloshinskii-Moriya interactions, which can prevent long-range magnetic order. Using magnetic Raman scattering response we identify 160 K as a temperature of an upturn of magnetic correlations. The temperature range below 160 K, but above 50 K where antiferromagnetic correlations start to increase, is a candidate for spin-nematic regime.

16.
Nature ; 584(7822): E37, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782392

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Phys Rev Lett ; 125(4): 046401, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794798

RESUMO

We use scanning tunneling microscopy to elucidate the atomically resolved electronic structure in the strongly correlated kagome Weyl antiferromagnet Mn_{3}Sn. In stark contrast to its broad single-particle electronic structure, we observe a pronounced resonance with a Fano line shape at the Fermi level resembling the many-body Kondo resonance. We find that this resonance does not arise from the step edges or atomic impurities but the intrinsic kagome lattice. Moreover, the resonance is robust against the perturbation of a vector magnetic field, but broadens substantially with increasing temperature, signaling strongly interacting physics. We show that this resonance can be understood as the result of geometrical frustration and strong correlation based on the kagome lattice Hubbard model. Our results point to the emergent many-body resonance behavior in a topological kagome magnet.

18.
Nature ; 580(7805): 608-613, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350469

RESUMO

Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles1-4. It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes1-16. To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation17,18. However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film19 of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 1010 to 1011 amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals-positive for Pt (ref. 21), close to 0 for Cu and negative for W (ref. 22)-determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals23,24. Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.

19.
Nature ; 581(7806): 53-57, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376952

RESUMO

Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy1,2. To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space3-10. Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators11-13.

20.
Nat Commun ; 11(1): 909, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060261

RESUMO

Antiferromagnetic spin motion at terahertz (THz) frequencies attracts growing interests for fast spintronics, however, their smaller responses to external field inhibit device application. Recently the noncollinear antiferromagnet Mn3Sn, a Weyl semimetal candidate, was reported to show large anomalous Hall effect (AHE) at room temperature comparable to ferromagnets. Dynamical aspect of such large responses is an important issue to be clarified for future THz data processing. Here the THz anomalous Hall conductivity in Mn3Sn thin films is investigated by polarization-resolved spectroscopy. Large anomalous Hall conductivity [Formula: see text] at THz frequencies is clearly observed as polarization rotation. A peculiar temperature dependence corresponding to the breaking/recovery of symmetry in the spin texture is also discussed. Observation of the THz AHE at room temperature demonstrates the ultrafast readout for the antiferromagnetic spintronics using Mn3Sn, and will also open new avenue for studying nonequilibrium dynamics in Weyl antiferromagnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...