Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 22487, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110538

RESUMO

Focal segmental glomerulosclerosis, characterized by decreased numbers of podocytes in glomeruli, is a common cause of refractory nephrotic syndrome. Recently, we showed that enhanced glycosphingolipid GM3 expression after administration of valproic acid, an upregulator of ST3GAL5/St3gal5, was effective in preventing albuminuria and podocyte injury. We also revealed the molecular mechanism for this preventive effect, which involves GM3 directly binding nephrin that then act together in glycolipid-enriched membrane (GEM) fractions under normal conditions and in non-GEM fractions under nephrin injury conditions. Kidney disease is frequently referred to as a "silent killer" because it is often difficult to detect subjective symptoms. Thus, primary treatment for these diseases is initiated after the onset of disease progression. Consequently, the efficacy of enhanced levels of GM3 induced by valproic acid needs to be evaluated after the onset of the disease with severe albuminuria such as focal segmental glomerulosclerosis. Here, we report the therapeutic effect of enhanced GM3 expression induced via administration of valproic acid on albuminuria and podocyte injury after the onset focal segmental glomerulosclerosis in anti-nephrin antibody treated mice. Our findings suggest elevated levels of GM3 following treatment with valproic acid has therapeutic utility for kidney disease associated with severe albuminuria and podocyte injury.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Albuminúria/metabolismo , Ácido Valproico/efeitos adversos , Glicoesfingolipídeos/metabolismo
3.
J Am Chem Soc ; 145(37): 20595-20609, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695346

RESUMO

Experimental and theoretical rationalization of bond-shift valence tautomerization, characterized by double-well potential surfaces, is one of the most challenging topics of study among the rich electronic properties of antiaromatic molecules. Although the pseudo-Jahn-Teller effect (PJTE) is an essential effect to provide attractive characteristics of 4nπ systems, an understanding of the structure-property relationship derived from the PJTE for planar 4nπ electron systems is still in its infancy. Herein, we describe the synthesis and characterization of two regioisomers of the thiophene-fused diareno[a,f]pentalenes 6 and 7. The magnetic and optoelectronic properties characterize these sulfur-doped diareno[a,f]pentalenes as open-shell antiaromatic molecules, in sharp contrast to the closed-shell antiaromatic systems of 3 and 5, in which these main cores consist of the same number of π electrons as 6 and 7. Notably, thiophene-fused 6b and 7b showed pronounced antiaromaticity, the strongest among the previous systems, as well as moderate open-shell characteristics. Our experimental and theoretical investigations concluded that these properties of 6b and 7b are derived from the small energy barrier Ea‡ for the bond-shift valence tautomerization. The energy profile of the single crystal of 6b showed the temperature-dependent structural variations assigned to the dynamic mutual exchange between the two Cs-symmetric structures, which was also supported by changes in the chemical shifts of variable-temperature 1H NMR spectra in the solution phase. Both experimental and computational results revealed the importance of introducing heteroaromatic rings into 4nπ systems for controlling the PJTE and manifesting the antiaromatic and open-shell natures originating from the high-symmetric structure. The findings of this study advance the understanding of antiaromaticity characterized by the PJTE by controlling the energy barrier for bond-shift valence tautomerizations, potentially leading to the rational design of optoelectronic devices based on novel antiaromatic molecules possessing the strong contributions of their high-symmetric geometries.

4.
J Am Chem Soc ; 145(5): 3008-3015, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710457

RESUMO

The diversity and complexity of covalent organic frameworks (COFs) can be largely increased by incorporating multiple types of monomers with different topologies or sizes. However, an increase in the number of monomer types significantly complicates the COF formation process. Accordingly, much remains unclear regarding the viability of monomer combinations for ternary or higher-arity COFs. Herein, we show that, through an extensive examination of 12 two-nodes-one-linker ([2 + 1]) combinations, monomer-set viability is determined primarily by the conformational strain originating from disordered monomer arrangements, rather than other factors such as the difference in COF formation kinetics between monomers. When monomers cannot accommodate the strain associated with the formation of a locally disordered, yet crystalline framework, the corresponding [2 + 1] condensation yields a mixture of different COFs or an amorphous polymer. We also demonstrate that a node-linker pair that does not form a binary COF can be integrated to generate a single-phase framework upon addition of a small amount of the third component. These results will clarify the factors behind the successful formation of multicomponent COFs and refine their design by enabling accurate differentiation between allowed and disallowed monomer combinations.

5.
Nature ; 609(7927): 502-506, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104553

RESUMO

Hund's multiplicity rule states that a higher spin state has a lower energy for a given electronic configuration1. Rephrasing this rule for molecular excited states predicts a positive energy gap between spin-singlet and spin-triplet excited states, as has been consistent with numerous experimental observations over almost a century. Here we report a fluorescent molecule that disobeys Hund's rule and has a negative singlet-triplet energy gap of -11 ± 2 meV. The energy inversion of the singlet and triplet excited states results in delayed fluorescence with short time constants of 0.2 µs, which anomalously decrease with decreasing temperature owing to the emissive singlet character of the lowest-energy excited state. Organic light-emitting diodes (OLEDs) using this molecule exhibited a fast transient electroluminescence decay with a peak external quantum efficiency of 17%, demonstrating its potential implications for optoelectronic devices, including displays, lighting and lasers.

6.
Sci Rep ; 12(1): 16058, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163359

RESUMO

Podocytopathy, which is characterized by injury to podocytes, frequently causes proteinuria or nephrotic syndrome. There is currently a paucity of effective therapeutic drugs to treat proteinuric kidney disease. Recent research suggests the possibility that glycosphingolipid GM3 maintains podocyte function by acting on various molecules including nephrin, but its mechanism of action remains unknown. Here, various analyses were performed to examine the potential relationship between GM3 and nephrin, and the function of GM3 in podocytes using podocytopathy mice, GM3 synthase gene knockout mice, and nephrin injury cells. Reduced amounts of GM3 and nephrin were observed in podocytopathy mice. Intriguingly, this reduction of GM3 and nephrin, as well as albuminuria, were inhibited by administration of valproic acid. However, when the same experiment was performed using GM3 synthase gene knockout mice, valproic acid administration did not inhibit albuminuria. Equivalent results were obtained in model cells. These findings indicate that GM3 acts with nephrin in a collaborative manner in the cell membrane. Taken together, elevated levels of GM3 stabilize nephrin, which is a key molecule of the slit diaphragm, by enhancing the environment of the cell membrane and preventing albuminuria. This study provides novel insight into new drug discovery, which may offer a new therapy for kidney disease with albuminuria.


Assuntos
Albuminúria , Podócitos , Albuminúria/metabolismo , Animais , Glicoesfingolipídeos/metabolismo , Camundongos , Podócitos/metabolismo , Proteinúria/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia
7.
ACS Omega ; 7(28): 24468-24474, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874241

RESUMO

Vertical organic field-effect transistors (VOFETs) with a large current on/off ratio and easy fabrication process are highly desirable for future organic electronics. In this paper, we proposed an ultrathin p-type copper (II) phthalocyanine (CuPc) interfacial layer in reduced graphene oxide (rGO)-based VOFETs. The CuPc interfacial layer was sandwiched between the rGO electrode and the N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) organic layer. The introduced CuPc interfacial layer not only decreased the off-current density of the device but also slightly enhanced the on-current density. The threshold voltage of the device was also effectively improved and stabilized at around 0 V. The obtained device exhibited a current on/off ratio exceeding 106, which is the largest value reported for rGO-based VOFETs. The vertical electron mobility of the PTCDI-C8 layer estimated by the space-charge-limited current technique was 1.14 × 10-3 cm2/(V s). However, it was not the main limiting factor for the current density in this device. We totally fabricated 48 devices, and more than 75% could work. Besides, the device was stable with little performance degradation after 1 month. The use of low-cost, solution-processable rGO as work-function-tunable electrode and the application of an ultrathin CuPc interfacial layer in VOFETs may open up opportunities for future organic electronics.

8.
Materials (Basel) ; 14(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806446

RESUMO

Conjugated donor-acceptor molecules with intramolecular charge transfer absorption are employed for single-component organic solar cells. Among the five types of donor-acceptor molecules, the strong push-pull structure of DTDCPB resulted in solar cells with high JSC, an internal quantum efficiency exceeding 20%, and high VOC exceeding 1 V with little photon energy loss around 0.7 eV. The exciton binding energy (EBE), which is a key factor in enhancing the photocurrent in the single-component device, was determined by quantum chemical calculation. The relationship between the photoexcited state and the device performance suggests that the strong internal charge transfer is effective for reducing the EBE. Furthermore, molecular packing in the film is shown to influence photogeneration in the film bulk.

9.
Chemistry ; 27(26): 7356-7361, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33778999

RESUMO

Treatment of 11,12-bis(1,1'-biphenyl-3-yl or 6-phenylpyridin-2-yl)-substituted 11,12-dihydro-indolo[2,3-a]carbazole with an oxidizing system of Pd(II)/Ag(I) induced effective double dehydrogenative cyclization to afford the corresponding π-extended azahelicenes. The optical resolutions were readily achieved by a preparative chiral HPLC. It was found that the pyridopyrrolo-carbazole-based azahelicene that contains four nitrogen atoms exhibits ca. 6 times larger dissymmetry factors both in circularly dichroism (CD) and circularly polarized luminescence (CPL), |gCD | and |gCPL | values being 1.1×10-2 and 4.4×10-3 , respectively, as compared with the parent indolocarbazole-based azahelicene. Theoretical calculations at the RI-CC2 level were employed to rationalize the observed enhanced chiroptical responses. The (chir)optical properties of the former helicene was further tuned by a protonation leading to remarkable red-shift with a considerable enhancement of the |gCPL | value.

10.
ACS Appl Mater Interfaces ; 12(8): 9489-9497, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32013380

RESUMO

High vertical carrier mobilities in organic semiconductor films are a challenging issue for fundamentally improving the performance of vertical devices. To achieve improvement in the vertical direction, a reduced graphene oxide (rGO) template is used with pentacene and DNTT having a herringbone structure enabling two-dimensional (2D) transport in comparison with CuPc having a slipped-stack structure. A thin-film structure and the optoelectrical properties of the oriented films are investigated with respect to molecular structures and packing modes. The rGO template induces a "laid-down" herringbone structure for pentacene and DNTT with a face-on orientation. Our results reveal that intermolecular dispersion energy is an additional important factor to form face-on states of molecules and influences face-on ratios in the films on rGO. Vertical charge mobilities of the films are significantly enhanced by the rGO template. Particularly, the DNTT film with a laid-down herringbone structure produces a vertical mobility as high as 0.27 cm2 V-1 s-1, one of the highest values for ordinary thin films with several hundred nanometer thickness. These findings suggest that 2D transport is advantageous for vertical carrier transport also.

11.
Dev Genes Evol ; 230(3): 257-264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32030512

RESUMO

CRISPR/Cas9 genome-editing methods are used to reveal functions of genes and molecular mechanisms underlying biological processes in many species, including nematodes. In evolutionary biology, the nematode Pristionchus pacificus is a satellite model and has been used to understand interesting phenomena such as phenotypic plasticity and self-recognition. In P. pacificus, CRISPR/Cas9-mediated mutations are induced by microinjecting a guide RNA (gRNA) and Cas9 protein into the gonads. However, mutant screening is laborious and time-consuming due to the absence of visual markers. In this study, we established a Co-CRISPR strategy by using a dominant roller marker in P. pacificus. We found that heterozygous mutations in Ppa-prl-1 induced the roller phenotype, which can be used as an injection marker. After the co-injection of Ppa-prl-1 gRNA, target gRNA, and the Cas9 protein, roller progeny and their siblings were examined using the heteroduplex mobility assay and DNA sequencing. We found that some of the roller and non-roller siblings had mutations at the target site. We used varying Cas9 concentrations and found that a higher concentration of Cas9 did not increase genome-editing events. The Co-CRISPR strategy promotes the screening for genome-editing events and will facilitate the development of new genome-editing methods in P. pacificus.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Nematoides/genética , Animais , Quimiotaxia , Eletroforese em Microchip/métodos , Marcadores Genéticos , Genoma Helmíntico , Heterozigoto , Microinjeções/métodos , Modelos Animais , Mutação , Fenótipo , RNA Guia de Cinetoplastídeos
12.
J Phys Chem A ; 124(1): 46-55, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31800239

RESUMO

Reaction of 3O2 with singlet excited state (S1) of highly luminescent cycloparaphenylenes (CPPs), i.e., [n]CPP where n = 9, 12, and 15 in solution has been studied by transient absorption (TA) measurements seamless for the time range from subnanosecond to microsecond based on the randomly-interleaved-pulse-train (RIPT) method recently developed by our group. We found efficient quenching of S1 by 3O2 through observation of Sn ← S1 transient absorption and the steady state fluorescence measurements. Concomitantly, we have become aware of the acceleration of the rate of intersystem crossing (ISC) from S1 to the triplet excited state (T1) through the observation of the evident enhancement of Tn ← T1 absorption intensity. We have established the analysis procedure to evaluate the rate constant of ISC (kISC0) in the absence of O2 and the bimolecular rate constant of ISC induced by 3O2 (kISCO2) only by using TA decay data in the presence of O2. On the basis of these analyses, we further succeeded in determining the quantum yield of T1 (ΦT) with and without O2. In addition, the absorption coefficient of T1 (εT1) and S1 (εS1) could be estimated with reference to that of T1 of C60. These photophysical parameters are largely dependent on the ring size, where the lifetime of S1 (τS) in the absence and presence of O2 dominates ΦT as well as the quantum yield of fluorescence (ΦF).

13.
RSC Adv ; 9(57): 32940-32945, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35529162

RESUMO

A reduced graphene oxide (rGO) film is first applied to a surface template layer to control the molecular orientation of crystalline organic semiconductors. The ultrathin and ultrasmooth rGO layer was successfully prepared on a substrate without a transfer process by spin-coating a carefully purified GO aqueous dispersion. This rGO layer exhibited a strong templating effect rivaling monolayer graphene, inducing a face-on orientation of copper phthalocyanine molecules leading to significant improvement of vertical carrier mobilities. The highly-conductive and transparent rGO film does not hamper charge transport at the interface and photoabsorption unlike conventional templating materials. This method can be widely used for vertical organic devices that require high carrier mobilities and strong photoabsorption/emission.

14.
Chem Sci ; 9(32): 6614-6621, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30310593

RESUMO

The synergistic action of properly integrated semiconducting materials can bring about sophisticated electronic processes and functions. However, it is often a great challenge to achieve optimal performance in organic devices because of the limited control over the distribution of different materials in active layers. Here, we employ a unique photoreaction-based layer-by-layer solution process for preparing ternary organic photovoltaic layers. This process is applicable to a variety of compounds from wide-band-gap small molecules to narrow-band-gap π-extended systems, and enables the preparation of multicomponent organic semiconducting thin films having the right compound at the right place. The resulting ternary photovoltaic devices afford high internal quantum efficiencies, leading to an approximately two times higher power-conversion efficiency as compared to the corresponding binary bulk-heterojunction system. This work opens up new possibilities in designing materials and active layers for solution-processed organic electronic devices.

15.
Chem Sci ; 9(15): 3638-3643, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780493

RESUMO

Helical self-assembly of functional π-conjugated molecules offers unique photochemical and electronic properties in the spectroscopic level, but there are only a few examples that demonstrate their positive impact on the optoelectronic device level. Here, we demonstrate that hydrogen-bonded tapelike supramolecular polymers of a barbiturated oligo(alkylthiophene) show notable improvement in their photovoltaic properties upon organizing into helical nanofibers. A tapelike hydrogen-bonded supramolecular array of barbiturated oligo(butylthiophene) molecules was directly visualized by STM at a liquid-solid interface. TEM, AFM and XRD revealed that the tapelike supramolecular polymers further organize into helical nanofibers in solution and bulk states. Bulk heterojunction solar cells of the helical nanofibers and soluble fullerene showed a power conversion efficiency of 4.5%, which is markedly high compared to that of the regioisomer of butyl chains organizing into 3D lamellar agglomerates.

16.
Sci Rep ; 7: 43098, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225029

RESUMO

The design of molecular systems with high-fidelity self-assembly pathways that include several levels of hierarchy is of primary importance for the understanding of structure-function relationships, as well as for controlling the functionality of organic materials. Reported herein is a high-fidelity self-assembly system that comprises two hydrogen-bonding molecular semiconductors with regioisomerically attached short alkyl chains. Despite the availability of both discrete cyclic and polymeric linear hydrogen-bonding motifs, the two regioisomers select one of the two motifs in homogeneous solution as well as at the 2D-confined liquid-solid interface. This selectivity arises from the high directionality of the involved hydrogen-bonding interactions, which renders rerouting to other self-assembly pathways difficult. In thin films and in the bulk, the resulting hydrogen-bonded assemblies further organize into the expected columnar and lamellar higher-order architectures via solution processing. The contrasting organized structures of these regioisomers are reflected in their notably different miscibility with soluble fullerene derivatives in the solid state. Thus, electron donor-acceptor blend films deliver a distinctly different photovoltaic performance, despite their virtually identical intrinsic optoelectronic properties. Currently, we attribute this high-fidelity control via self-assembly pathways to the molecular design of these supramolecular semiconductors, which lacks structure-determining long aliphatic chains.

17.
J Am Chem Soc ; 138(35): 11335-43, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27511286

RESUMO

Intermolecular orbital coupling is fundamentally important to organic semiconductor performance. Recently, we reported that 2,6':2',6″-terazulene (TAz1) exhibited excellent performance as an n-type organic field-effect transistor (OFET) via molecular orbital distribution control. To validate and develop this concept, here we present three other terazulene regioisomers, which have three azulene molecules connected at the 2- or 6-position along the long axis of the azulene, thus constructing a linear expanded π-conjugation system: 2,2':6',2″-terazulene (TAz2), 2,2':6',6″-terazulene (TAz3), and 6,2':6',6″-terazulene (TAz4). TAz2 and TAz3 exhibit ambipolar characteristics; TAz4 exhibits clear n-type transistor behavior as an OFET. The lowest unoccupied molecular orbitals (LUMOs) of all terazulenes are fully delocalized over the entire molecule. In contrast, the highest occupied molecular orbitals (HOMOs) of TAz2 and TAz3 are delocalized over the 2,2'-biazulene units; the HOMOs of TAz4 are localized at one end of the azulene unit. These findings confirm that terazulene isomers which are simple hydrocarbon compounds are versatile materials with a tunable-polarity FET characteristic that depends on the direction of the azulene unit and the related contrast of the molecular orbital distribution in the terazulene backbone.

18.
Glycobiology ; 26(11): 1248-1256, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27496768

RESUMO

Yeast cells have been engineered for the production of glycoproteins as biopharmaceuticals with humanized N-linked oligosaccharides. The suppression of yeast-specific O-mannosylation is important to reduce immune response and to improve heterologous protein productivity in the production of biopharmaceuticals. However, so far, there are few reports of the engineering of both N-linked and O-linked oligosaccharides in yeast cells. In the present study, we describe the generation of a Saccharomyces cerevisiae strain capable of producing a glycoprotein with humanized Man5GlcNAc2 N-linked oligosaccharides, an intermediate of mammalian hybrid- and complex-type oligosaccharides, while suppressing O-mannosylation. First, a yeast strain that produces a glycoprotein with Man5GlcNAc2 was isolated by introducing msdS encoding α-1,2-mannosidase into a strain synthesizing Man8GlcNAc2 N-linked oligosaccharides. Next, to suppress O-mannosylation, an O-mannosyltransferase-deficient strain was generated by disrupting PMT1 and PMT2 Although the relative amount of O-linked oligosaccharides in the disruptant was reduced to approximately 40% of that in wild type cells, this strain exhibited growth defects and decreased protein productivity. To overcome the growth defects, we applied a mutagenesis technique that is based on the disparity theory of evolution. Finally, to improve protein productivity of the growth-recovered strain, vacuolar proteases PEP4 and PRB1 were further disrupted. Thus, by combining genetic engineering and disparity mutagenesis, we generated an Saccharomyces cerevisiae strain whose N- and O-linked oligosaccharide synthetic pathways were engineered to effectively produce the heterologous protein.


Assuntos
Engenharia Genética , Oligossacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicoproteínas/biossíntese , Glicoproteínas/química , Oligossacarídeos/química , Oligossacarídeos/genética , Saccharomyces cerevisiae/química
19.
J Biol Chem ; 291(41): 21424-21433, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27539856

RESUMO

Glycosphingolipid GM3, a known suppressor of epidermal growth factor receptor (EGFR) phosphorylation, inhibits cell proliferation. Valproic acid, conversely, is known as an up-regulator of GM3 synthase gene (ST3GAL5). To test the possibility that valproic acid could inhibit EGFR phosphorylation by increasing the level of GM3 in cells, we treated A431 epidermoid carcinoma cells with valproic acid and found that valproic acid treatment caused an about 6-fold increase in the GM3 level but only a marginal increase in the GM2 level in these cells and that the observed increase in GM3 level was valproic acid dose-dependent. Consistent with this observation, valproic acid treatment induced GM3 synthase gene expression by about 8-fold. Furthermore, phosphorylation of EGFR was reduced, and cell proliferation was inhibited following valproic acid treatment. Consistent with these results, transient expression of GM3 synthase gene in A431 cells also increased cellular level of GM3, reduced phosphorylation of EGFR, and inhibited cell proliferation. Treatment with l-phenyl-2-decanoylamino-3-morpholino-l-propanol, an inhibitor of glucosylceramide synthesis, decreased the cellular level of GM3 and reduced the inhibitory effects of valproic acid on EGFR phosphorylation and cell proliferation. These results suggested that induction of GM3 synthesis was enough to inhibit proliferation of cancer cells by suppressing EGFR activity. Valproic acid treatment similarly increased the GM3 level and reduced phosphorylation of EGFR in U87MG glioma cells and inhibited their proliferation. These results suggested that up-regulators of GM3 synthase gene, such as valproic acid, are potential suppressors of cancer cell proliferation.


Assuntos
Gangliosídeo G(M3)/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/metabolismo , Sialiltransferases/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gangliosídeo G(M3)/genética , Humanos , Neoplasias/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Sialiltransferases/genética , Proteínas Supressoras de Tumor/genética
20.
Chem Commun (Camb) ; 52(50): 7874-7, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27251116

RESUMO

Benzodithiophene-functionalized oligothiophene with barbituric acid hydrogen-bonding unit self-assembles into nanoscopic structures via the formation of rosettes. The nanostructures show a power conversion efficiency of 3% upon mixing with PC61BM in bulk-heterojunction solar cells without thermal annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...