Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 13: 1359-1368, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537913

RESUMO

Antibody drug conjugates (ADC) are one of the attractive modalities for the treatment of acute myeloid leukemia (AML). Previously, we have developed ASP1235, a novel ADC targeting Fms-like tyrosine kinase 3 (FLT3) which is widely expressed on the leukemic blasts of AML patients. In this study, we sought to evaluate the therapeutic effect of ASP1235 in combination with venetoclax plus azacitidine, a novel standard-of-care treatment for elderly AML patients, in ASP1235 poor sensitive AML cells. To identify the suitable preclinical model, we first evaluated the growth inhibitory effect of ASP1235 on several leukemia cell lines expressing FLT3 and found that THP-1 cells were partially sensitive to ASP1235 in vitro. Furthermore, ASP1235 showed marginal anti-tumor activity in a THP-1 xenograft model. Compared to the leukemic blasts in most of the relapsed or refractory (R/R) AML patients tested, THP-1 cells expressed equivalent protein levels of Bcl-2, suggesting that ASP1235 in combination with venetoclax plus azacitidine is a rational treatment in the THP-1 model. In vitro, ASP1235 showed a cytotoxic effect on THP-1 cells in combination with venetoclax, and the combination effect was greater than the additive effect. Furthermore, ASP1235 also showed a combination effect with venetoclax plus azacitidine treatment. Similarly, the combination of ASP1235, venetoclax and azacitidine showed a superior anti-tumor effect in a THP-1 xenograft model without obvious body weight loss. These findings provide supportive evidence that the triple combination of ASP1235, venetoclax and azacitidine would improve the clinical outcome of ASP1235 monotherapy and venetoclax plus azacitidine regimen in AML patients.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Animais , Camundongos , Xenoenxertos , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Bioorg Med Chem ; 33: 116019, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486159

RESUMO

Fibroblast growth factor receptor 3 (FGFR3) is an attractive therapeutic target for the treatment of patients with bladder cancer harboring genetic alterations in FGFR3. We identified pyrimidine derivative 20b, which induced tumor regression following oral administration to a bladder cancer xenograft mouse model. Compound 20b was discovered by optimizing lead compound 1, which we reported previously. Specifically, reducing the molecular size of the substituent at the 4-position and replacing the linker of the 5-position in the pyrimidine scaffold resulted in an increase in systemic exposure. Furthermore, introduction of two fluorine atoms into the 3,5-dimethoxyphenyl ring enhanced FGFR3 inhibitory activity. Molecular dynamics (MD) simulation of 20b suggested that the fluorine atom interacts with the main chain NH moiety of Asp635 via a hydrogen bond.


Assuntos
Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Dinâmica Molecular , Estrutura Molecular , Células NIH 3T3 , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Pirimidinas/administração & dosagem , Pirimidinas/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Solubilidade , Relação Estrutura-Atividade , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
3.
Oncotarget ; 10(58): 6111-6123, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31692922

RESUMO

Therapeutic effects of FLT3 inhibitors have been reported in acute myeloid leukemia (AML) with constitutively activating FLT3 mutations, including internal tandem duplication (ITD) and point mutation, which are found in approximately one-third of AML patients. One of the critical issues of treatment with FLT3 inhibitors in FLT3-mutated AML is drug resistance. FLT3 ligand (FL) represents a mechanism of resistance to FLT3 inhibitors, including quizartinib, midostaurin, and sorafenib, in AML cells harboring both wild-type and mutant FLT3 (FLT3 wt/FLT3 mut). Here, we investigated the effect of FL on the efficacy of gilteritinib, a FLT3 inhibitor, in AML-derived cells in vitro and in mice. In contrast to other FLT3 inhibitors, FL stimulation had little effect on growth inhibition or apoptosis induction by gilteritinib. The antitumor activity of gilteritinib was also comparable between xenograft mouse models injected with FL-expressing and mock MOLM-13 cells. In the FLT3 signaling analyses, gilteritinib inhibited FLT3wt and FLT3-ITD to a similar degree in HEK293 and Ba/F3 cells, and similarly suppressed FLT3 downstream signaling molecules (including ERK1/2 and STAT5) in both the presence and absence of FL in MOLM-13 cells. Co-crystal structure analysis showed that gilteritinib bound to the ATP-binding pocket of FLT3. These results suggest that gilteritinib has therapeutic potential in FLT3-mutated AML patients with FL overexpression.

4.
Cancer Sci ; 108(2): 236-242, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27885740

RESUMO

FGF/FGFR gene aberrations such as amplification, mutation and fusion are associated with many types of human cancers including urothelial cancer. FGFR kinase inhibitors are expected to be a targeted therapy for urothelial cancer harboring FGFR3 gene alternations. ASP5878, a selective inhibitor of FGFR1, 2, 3 and 4 under clinical investigation, selectively inhibited cell proliferation of urothelial cancer cell lines harboring FGFR3 point mutation or fusion (UM-UC-14, RT-112, RT4 and SW 780) among 23 urothelial cancer cell lines. Furthermore, ASP5878 inhibited cell proliferation of adriamycin-resistant UM-UC-14 cell line harboring MDR1 overexpression and gemcitabine-resistant RT-112 cell line. The protein expression of c-MYC, an oncoprotein, in gemcitabine-resistant RT-112 cell line was higher than that in RT-112 parental cell line and ASP5878 decreased the c-MYC expression in both RT-112 parental and gemcitabine-resistant RT-112 cell lines. Once-daily oral administration of ASP5878 exerted potent antitumor activities in UM-UC-14, RT-112 and gemcitabine-resistant RT-112 xenograft models without affecting body weight. These findings suggest that ASP5878 has the potential to be an oral targeted therapy against urothelial cancer harboring FGFR3 fusion or FGFR3 point mutation after the acquisition of gemcitabine- or adriamycin-resistance.


Assuntos
Terapia de Alvo Molecular , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Urológicas/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fusão Gênica , Humanos , Mutação Puntual , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Neoplasias Urológicas/genética , Neoplasias Urológicas/metabolismo , Gencitabina
5.
Vascul Pharmacol ; 49(2-3): 77-83, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18585480

RESUMO

We investigated the effects of epinephrine and dopamine on retinal blood vessels in streptozotocin (STZ, 80 mg/kg, i.p.)-treated rats and age-matched control rats to determine whether diabetes mellitus alters the retinal vascular responses to circulating catecholamines. Experiments were performed 6-8 weeks after treatment with STZ or the vehicle. The fundus images were captured with the digital fundus camera system for small animals we developed and diameters of retinal blood vessels contained in the digital images were measured. Epinephrine increased the diameters of retinal blood vessels, but the vasodilator responses were reduced in diabetic rats. Dopamine produced a biphasic retinal vascular response with an initial vasoconstriction followed by a vasodilation. The vasoconstrictor effects of dopamine on retinal arterioles were enhanced in diabetic rats, whereas the difference between the two groups was abolished by treatment with propranolol. The vasodilator effect of isoproterenol, but not of the activator of adenylyl cyclase colforsin, on retinal blood vessels was reduced in diabetic rats. No difference in vasoconstriction of retinal blood vessels to phenylephrine between non-diabetic and diabetic rats was observed. The vasodilator responses of retinal blood vessels to 1,1-dimethyl-4-phenylpiperazinium, a ganglionic nicotinic receptor agonist, were also attenuated in diabetic rats. These results suggest that diabetes mellitus alters the retinal vascular responses to circulating catecholamines and the impairment of vasodilator responses mediated by beta-adrenoceptors contributes to the alteration.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Vasos Retinianos/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Agonistas Adrenérgicos beta/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Colforsina/análogos & derivados , Colforsina/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Iodeto de Dimetilfenilpiperazina/farmacologia , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Epinefrina/administração & dosagem , Epinefrina/farmacologia , Estimulantes Ganglionares/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Injeções Intravenosas , Isoproterenol/farmacologia , Masculino , Agonistas Nicotínicos/farmacologia , Fenilefrina/farmacologia , Fotografação/instrumentação , Propranolol/farmacologia , Ratos , Ratos Wistar , Vasos Retinianos/fisiologia , Estreptozocina
6.
Naunyn Schmiedebergs Arch Pharmacol ; 376(6): 423-30, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18092153

RESUMO

Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in the retinal circulation.


Assuntos
Adenosina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Vasos Retinianos/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Inibidores Enzimáticos/farmacologia , Glibureto/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Pinacidil/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Vasos Retinianos/fisiopatologia , Estreptozocina
7.
Vascul Pharmacol ; 46(3): 153-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17079193

RESUMO

Diabetes alters retinal hemodynamics, but little is known about the impact of diabetes on the role of endothelium-derived hyperpolarizing factor (EDHF) in the regulation of retinal circulation. Therefore, we examined how diabetes affects the nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine. Male Wistar rats were treated with streptozotocin (80 mg/kg, i.p.) and experiments were performed 6-8 weeks later. Under artificial ventilation, rats were treated with tetrodotoxin (100 microg/kg, i.v.) to eliminate any nerve activity and prevent movement of the eye. Methoxamine was used to maintain adequate systemic circulation. Fundus images were captured by a digital camera that was equipped with a special objective lens. The vasodilator responses of retinal arterioles were assessed by measuring changes in diameters of the vessels. In streptozotocin-induced diabetic rats and the age-matched controls, acetylcholine increased diameters of retinal arterioles in a dose-dependent manner. The vasodilator responses to acetylcholine in diabetic rats were smaller than those in control rats. The nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles observed under treatment with combination of N(G)-nitro-l-arginine methyl ester (30 mg/kg, i.v.) and indomethacin (5 mg/kg, i.v.) were also attenuated by diabetes. Diabetes did not alter the dilator responses of retinal arterioles to sodium nitroprusside and forskolin. These results suggest that diabetes impairs EDHF-mediated vasodilation of retinal arterioles induced by acetylcholine. The impaired EDHF-mediated vasodilation may contribute to alteration of retinal hemodynamics in diabetes.


Assuntos
Acetilcolina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Óxido Nítrico/metabolismo , Prostaglandinas/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Arteríolas , Fatores Biológicos/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Wistar , Vasos Retinianos/metabolismo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...