Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8271, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092786

RESUMO

The Josephson junction (JJ) is an essential element of superconducting (SC) devices for both fundamental and applied physics. The short-range coherent coupling of two adjacent JJs forms Andreev molecule states (AMSs), which provide a new ingredient to engineer exotic SC phenomena such as topological SC states and Andreev qubits. Here we provide tunneling spectroscopy measurements on a device consisting of two electrically controllable planar JJs sharing a single SC electrode. We discover that Andreev spectra in the coupled JJ are highly modulated from those in the single JJs and possess phase-dependent AMS features reproduced in our numerical calculation. Notably, the SC gap closing due to the AMS formation is experimentally observed. Our results help in understanding SC transport derived from the AMS and promoting the use of AMS physics to engineer topological SC states and quantum information devices.

2.
Phys Rev Lett ; 110(11): 117002, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166564

RESUMO

We study theoretically the proximity effect of a one-dimensional metallic quantum wire (in the absence of spin-orbit interaction) lying on top of an unconventional superconductor. Three different material classes are considered as a substrate: (i) a chiral superconductor in class D with broken time-reversal symmetry and a class DIII superconductor (ii) with and (iii) without a nontrivial Z(2) number. Interestingly, we find degenerate zero energy Majorana bound states at both ends of the wire for all three cases. They are unstable against spin-orbit interaction in case (i), while they are topologically protected by time-reversal symmetry in cases (ii) and (iii). Remarkably, we show that nonlocal spin correlations between the two ends of the wire can be simply controlled by a gate potential in our setup.

3.
Phys Rev Lett ; 108(14): 147003, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540818

RESUMO

We theoretically study a possible topological superconductivity in the interacting two layers of Rashba systems, which can be fabricated by the heterostructures of semiconductors and oxides. The hybridization, which induces the gap in the single particle dispersion, and the electron-electron interaction between the two layers leads to the novel phase diagram of the superconductivity. It is found that the topological superconductivity without breaking time-reversal symmetry is realized when (i) the Fermi energy is within the hybridization gap, and (ii) the interlayer interaction is repulsive, both of which can be satisfied in realistic systems. Edge channels are studied in a tight-binding model numerically, and the several predictions on experiments are also given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA