Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(10): 5440, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37810271

RESUMO

In recent years, there has been a growing interest in studying the trajectories of microparticles inside living cells. Among other things, such studies are useful in understanding the spatio-temporal properties of a cell. In this work, we study the stochastic trajectories of a passive microparticle inside a cell using experiments and theory. Our theory is based on modeling the microparticle inside a cell as an active particle in a viscoelastic medium. The activity is included in our model from an additional stochastic term with non-zero persistence in the Langevin equation describing the dynamics of the microparticle. Using this model, we are able to predict the power spectral density (PSD) measured in the experiment and compute active forces. This caters to the situation where a tracer particle is optically confined and then yields a PSD for positional fluctuations. The low frequency part of the PSD yields information about the active forces that the particle feels. The fit to the model extracts such active force. Thus, we can conclude that trapping the particle does not affect the values of the forces extracted from the active fits if accounted for appropriately by proper theoretical models. In addition, the fit also provides system properties and optical tweezers trap stiffness.

2.
Phys Rev E ; 108(2-1): 024121, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723685

RESUMO

We study the stationary states of an overdamped active Brownian particle (ABP) in a harmonic trap in two dimensions via mathematical calculations and numerical simulations. In addition to translational diffusion, the ABP self-propels with a certain velocity, whose magnitude is constant, but its direction is subject to Brownian rotation. In the limit where translational diffusion is negligible, the stationary distribution of the particle's position shows a transition between two different shapes, one with maximum and the other with minimum density at the center, as the trap stiffness is increased. We show that this nonintuitive behavior is captured by the relevant Fokker-Planck equation, which, under minimal assumptions, predicts a continuous phase transition-like change between the two different shapes. As the translational diffusion coefficient is increased, both these distributions converge into the equilibrium, Boltzmann form. Our simulations support the analytical predictions and also show that the probability distribution of the orientation angle of the self-propulsion velocity undergoes a transition from unimodal to bimodal forms in this limit. We also extend our simulations to a three-dimensional trap and find similar behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...