Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
N Biotechnol ; 72: 149-158, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36442794

RESUMO

Droplet-based microfluidic technology is a powerful tool for single-cell cultivation and rapid isolation of bacteria, yeasts and algae. However, it has been of limited use for studies of filamentous fungi due to the fast growth of their branched hyphae. The long regeneration time for fungal protoplasts and low-throughput screening methods are inherent problems for current genetic transformation techniques. Therefore, we have developed a novel droplet-based method for the filamentous fungus Trichoderma reesei expressing green fluorescent protein (GFP) as a marker. This approach presented several outstanding advantages over the traditional transformation method, including a 7-fold reduction in time for T. reesei protoplast regeneration, an 8-fold increase in regeneration frequency, and a screening speed of up to 8,000 droplets min-1. In this study, we encapsulated and incubated the gfp-transformed T. reesei protoplasts in droplets for 24 h, screened the droplets in a high-throughput assay, and eventually collected a transformant library with over 96 % of the candidates transformed with the marker gene. This versatile approach should make fungi more amenable to genetic manipulation and encourage strain improvements for industrial applications.


Assuntos
Trichoderma , Trichoderma/genética , Trichoderma/metabolismo , Microfluídica , Biblioteca Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA