Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ERJ Open Res ; 9(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699651

RESUMO

Research question: The assessment of cough frequency in clinical practice relies predominantly on the patient's history. Currently, objective evaluation of cough is feasible with bulky equipment during a brief time (i.e. hours up to 1 day). Thus, monitoring of cough has been rarely performed outside clinical studies. We developed a small wearable cough detector (SIVA-P3) that uses deep neural networks for the automatic counting of coughs. This study examined the performance of the SIVA-P3 in an outpatient setting. Methods: We recorded cough epochs with SIVA-P3 over eight consecutive days in patients suffering from chronic cough. During the first 24 h, the detector was validated against cough events counted by trained human listeners. The wearing comfort and the device usage were assessed using a questionnaire. Results: In total, 27 participants (mean±sd age 50±14 years) with either chronic unexplained cough (n=12), COPD (n=4), asthma (n=5) or interstitial lung disease (n=6) were studied. During the daytime, the sensitivity of SIVA-P3 cough detection was 88.5±2.49% and the specificity was 99.97±0.01%. During the night-time, the sensitivity was 84.15±5.04% and the specificity was 99.97±0.02%. The wearing comfort and usage of the device was rated as very high by most participants. Conclusion: SIVA-P3 enables automatic continuous cough monitoring in an outpatient setting for objective assessment of cough over days and weeks. It shows comparable sensitivity or higher sensitivity than other devices with fully automatic cough counting. Thanks to its wearing comfort and the high performance for cough detection, it has the potential for being used in routine clinical practice.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38222883

RESUMO

Fluorescein video angiographies (FVAs) are a diagnostic tool for eye diseases, such as diabetic retinopathy (DR). Currently, kinetic tracer model methods based on indicator-dilutions theory use FVAs to extract biomarkers (e.g., volumetric blood flow and retinal vascular permeability) via pixel mapping using two-step non-linear least square fitting. Prior to biomarker extraction, the FVAs must attain optimal quality. The objective of this research is to create a program to remove all frames experiencing signal drops (causes include blinking, squinting, and head movement). 15 FVAs (6 healthy control subjects, 6 diabetes mellitus no DR (DMnoDR) subjects, and 3 mild non-proliferative DR (NPDR) subjects) were analyzed for low quality frames. The average signal of each frame was analyzed as top, middle, and bottom thirds. The frame with maximum average signal up to the final frame of a created "Gold Standard" was compared with the raw AVI's frame with maximum average signal and subsequent frames. All frames before maximum average signal and any remaining frames were compared with the previous good-quality raw frame to determine if the frame of interest was of good quality. All remaining frames were subsequently re-evaluated and flagged if they had a local minimum prominence of 10% of the maximum average signal. The flagged frames', as well as former and subsequent frames', quality were subjectively determined. The AVI quality was subsequently tested via pre-DTKM processing and biomarker extraction via DTKM methods. Results displayed that the semi-automated frame removal process provides sufficient quality AVIs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37187766

RESUMO

An intact blood-retinal barrier is critical to maintaining the function of the retina. Many diseases of the eye have been directly associated with impairment in vascular permeability, and methods to measure vascular permeability could offer a window into early detection of disease; however, there exist no direct measures of vascular permeability that have be translated to the clinic. This work details a complete clinical workflow to quantify vascular permeability and volumetric blood flow from fluorescein videoangiography data, with validation through realistic simulations. For optimizing the protocol, this study carried on frame rate of fluorescein videoangiography to generate a high-resolution image while minimizing the error.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34183872

RESUMO

A paired-agent fluorescent molecular imaging strategy is presented as a method to measure drug target engagement in whole tumor imaging. The protocol involves dynamic imaging of a pair of targeted and control imaging agents prior to and following antibody therapy. Simulations demonstrated that antibody "drug target engagement" can be estimated within a 15%-error over a wide range of tumor physiology (blood flow, vascular permeability, target density) and antibody characteristics (affinity, binding rates). Experimental results demonstrated the first in vivo detection of binding site barrier, highlighting the potential for this methodology to provide novel insights in drug distribution/binding imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...