Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(18): eadl6409, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701215

RESUMO

Ultrafast photoinduced melting provides an essential platform for studying nonequilibrium phase transitions by linking the kinetics of electron dynamics to ionic motions. Knowledge of dynamic balance in their energetics is essential to understanding how the ionic reaction is influenced by femtosecond photoexcited electrons with notable time lag depending on reaction mechanisms. Here, by directly imaging fluctuating density distributions and evaluating the ionic pressure and Gibbs free energy from two-temperature molecular dynamics that verified experimental results, we uncovered that transient ionic pressure, triggered by photoexcited electrons, controls the overall melting kinetics. In particular, ultrafast nonequilibrium melting can be described by the reverse nucleation process with voids as nucleation seeds. The strongly driven solid-to-liquid transition of metallic gold is successfully explained by void nucleation facilitated by photoexcited electron-initiated ionic pressure, establishing a solid knowledge base for understanding ultrafast nonequilibrium kinetics.

2.
J Synchrotron Radiat ; 31(Pt 3): 469-477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517754

RESUMO

Various X-ray techniques are employed to investigate specimens in diverse fields. Generally, scattering and absorption/emission processes occur due to the interaction of X-rays with matter. The output signals from these processes contain structural information and the electronic structure of specimens, respectively. The combination of complementary X-ray techniques improves the understanding of complex systems holistically. In this context, we introduce a multiplex imaging instrument that can collect small-/wide-angle X-ray diffraction and X-ray emission spectra simultaneously to investigate morphological information with nanoscale resolution, crystal arrangement at the atomic scale and the electronic structure of specimens.

3.
Sci Adv ; 9(50): eadi6096, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100581

RESUMO

Giant impact-driven redox processes in the atmosphere and magma ocean played crucial roles in the evolution of Earth. However, because of the absence of rock records from that time, understanding these processes has proven challenging. Here, we present experimental results that simulate the giant impact-driven reactions between iron and volatiles (H2O and CO2) using x-ray free electron laser (XFEL) as fast heat pump and structural probe. Under XFEL pump, iron is oxidized to wüstite (FeO), while volatiles are reduced to H2 and CO. Furthermore, iron oxidation proceeds into formation of hydrides (γ-FeHx) and siderite (FeCO3), implying redox boundary near 300-km depth. Through quantitative analysis on reaction products, we estimate the volatile and FeO budgets in bulk silicate Earth, supporting the Theia hypothesis. Our findings shed light on the fast and short-lived process that led to reduced atmosphere, required for the emergence of prebiotic organic molecules in the early Earth.

4.
Sci Rep ; 13(1): 17573, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845245

RESUMO

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

5.
IUCrJ ; 10(Pt 6): 656-661, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903100

RESUMO

X-ray structural science is undergoing a revolution driven by the emergence of X-ray Free-electron Laser (XFEL) facilities. The structures of crystalline solids can now be studied on the picosecond time scale relevant to phonons, atomic vibrations which travel at acoustic velocities. In the work presented here, X-ray diffuse scattering is employed to characterize the time dependence of the liquid phase emerging from femtosecond laser-induced melting of polycrystalline gold thin films using an XFEL. In a previous analysis of Bragg peak profiles, we showed the supersonic disappearance of the solid phase and presented a model of pumped hot electrons carrying energy from the gold surface to scatter at internal grain boundaries. This generates melt fronts propagating relatively slowly into the crystal grains. By conversion of diffuse scattering to a partial X-ray pair distribution function, we demonstrate that it has the characteristic shape obtained by Fourier transformation of the measured F(Q). The diffuse signal fraction increases with a characteristic rise-time of 13 ps, roughly independent of the incident pump fluence and consequent final liquid fraction. This suggests the role of further melt-front nucleation processes beyond grain boundaries.

6.
IUCrJ ; 10(Pt 6): 700-707, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772598

RESUMO

Photoinduced nonequilibrium phase transitions have stimulated interest in the dynamic interactions between electrons and crystalline ions, which have long been overlooked within the Born-Oppenheimer approximation. Ultrafast melting before lattice thermalization prompted researchers to revisit this issue to understand ultrafast photoinduced weakening of the crystal bonding. However, the absence of direct evidence demonstrating the role of orbital dynamics in lattice disorder leaves it elusive. By performing time-resolved resonant X-ray scattering with an X-ray free-electron laser, we directly monitored the ultrafast dynamics of bonding orbitals of Ge to drive photoinduced melting. Increased photoexcitation of bonding electrons amplifies the orbital disturbance to expedite the lattice disorder approaching the sub-picosecond scale of the nonthermal regime. The lattice disorder time shows strong nonlinear dependence on the laser fluence with a crossover behavior from thermal-driven to nonthermal-dominant kinetics, which is also verified by ab initio and two-temperature molecular dynamics simulations. This study elucidates the impact of bonding orbitals on lattice stability with a unifying interpretation on photoinduced melting.

7.
Nano Lett ; 23(4): 1481-1488, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723175

RESUMO

Femtosecond laser pulses drive nonequilibrium phase transitions via reaction paths hidden in thermal equilibrium. This stimulates interest to understand photoinduced ultrafast melting processes, which remains incomplete due to challenges in resolving accompanied kinetics at the relevant space-time resolution. Here, by newly establishing a multiplexing femtosecond X-ray probe, we have successfully revealed ultrafast energy transfer processes in confined Au nanospheres. Real-time images of electron density distributions with the corresponding lattice structures elucidate that the energy transfer begins with subpicosecond melting at the specimen boundary earlier than the lattice thermalization, and proceeds by forming voids. Two temperature molecular dynamics simulations uncovered the presence of both heterogeneous melting with the melting front propagation from surface and grain boundaries and homogeneous melting with random melting seeds and nanoscale voids. Supported by experimental and theoretical results, we provide a comprehensive atomic-scale picture that accounts for the ultrafast laser-induced melting and evaporation kinetics.

8.
J Synchrotron Radiat ; 29(Pt 6): 1465-1479, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345755

RESUMO

A Hanbury Brown and Twiss interferometry experiment based on second-order correlations was performed at the PAL-XFEL facility. The statistical properties of the X-ray radiation were studied within this experiment. Measurements were performed at the NCI beamline at 10 keV photon energy under various operation conditions: self-amplified spontaneous emission (SASE), SASE with a monochromator, and self-seeding regimes at 120 pC, 180 pC and 200 pC electron bunch charge. Statistical analysis showed short average pulse duration from 6 fs to 9 fs depending on the operational conditions. A high spatial degree of coherence of about 70-80% was determined in the spatial domain for the SASE beams with the monochromator and self-seeding regime of operation. The obtained values describe the statistical properties of the beams generated at the PAL-XFEL facility.

9.
J Synchrotron Radiat ; 29(Pt 1): 194-201, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985436

RESUMO

Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described. Femtosecond TR-XAS measurements were conducted at the Ru L3-edge of well known photosensitizer tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]2+) in water. The results indicate ultrafast photoinduced electron transfer from the Ru center to the ligand, which demonstrates that the newly designed setup is applicable for monitoring ultrafast reactions in the femtosecond domain.

10.
Sci Adv ; 7(52): eabj8552, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936432

RESUMO

Ultrafast light-matter interactions enable inducing exotic material phases by promoting access to kinetic processes blocked in equilibrium. Despite potential opportunities, actively using nonequilibrium kinetics for material discovery is limited by the poor understanding on intermediate states of driven systems. Here, using single-pulse time-resolved imaging with x-ray free-electron lasers, we found intermediate states of photoexcited bismuth nanoparticles that showed kinetically reversed surface ordering during ultrafast melting. This entropy-lowering reaction was further investigated by molecular dynamics simulations to reveal that observed kinetics were thermodynamically buried in equilibrium, which emphasized the critical role of electron-mediated ultrafast free-energy modification in inducing exotic material phases. This study demonstrated that ultrafast photoexcitations of electrons provide an efficient strategy to induce hidden material phases by overcoming thermodynamic barriers via nonequilibrium reaction pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA