Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 171(4): 2760-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27255484

RESUMO

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Giberelinas/biossíntese , Caules de Planta/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Caules de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
2.
PLoS Comput Biol ; 11(10): e1004552, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26465776

RESUMO

Data integration procedures combine heterogeneous data sets into predictive models, but they are limited to data explicitly related to the target object type, such as genes. Collage is a new data fusion approach to gene prioritization. It considers data sets of various association levels with the prediction task, utilizes collective matrix factorization to compress the data, and chaining to relate different object types contained in a data compendium. Collage prioritizes genes based on their similarity to several seed genes. We tested Collage by prioritizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly related to the bacterial response, Collage proposed 8 candidate genes that were readily validated as necessary for the response of Dictyostelium to Gram-negative bacteria. These findings establish Collage as a method for inferring biological knowledge from the integration of heterogeneous and coarsely related data sets.


Assuntos
Compressão de Dados/métodos , Bases de Dados Genéticas , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Bactérias Gram-Negativas/fisiologia , Proteínas de Protozoários/metabolismo , Proliferação de Células/fisiologia , Mineração de Dados/métodos , Proteínas de Protozoários/genética
3.
Dev Biol ; 397(2): 203-11, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448698

RESUMO

Extracellular cAMP functions as a primary ligand for cell surface cAMP receptors throughout Dictyostelium discoideum development, controlling chemotaxis and morphogenesis. The developmental consequences of cAMP signaling and the metabolism of cAMP have been studied in great detail, but it has been unclear how cells export cAMP across the plasma membrane. Here we show pharmacologically and genetically that ABC transporters mediate cAMP export. Using an evolutionary-developmental biology approach, we identified several candidate abc genes and characterized one of them, abcB3, in more detail. Genetic and biochemical evidence suggest that AbcB3 is a component of the cAMP export mechanism in D. discoideum development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Quimiotaxia/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/crescimento & desenvolvimento , Morfogênese/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Técnicas de Silenciamento de Genes , Interferência de RNA , Transdução de Sinais/fisiologia
4.
PLoS One ; 9(6): e99397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901225

RESUMO

Subcellular localization, protein interactions, and post-translational modifications regulate the DNA damage response kinases ATR, ATM, and DNA-PK. During an analysis of putative ATR phosphorylation sites, we found that a single mutation at S1333 creates a hyperactive kinase. In vitro and in cells, mutation of S1333 to alanine (S1333A-ATR) causes elevated levels of kinase activity with and without the addition of the protein activator TOPBP1. S1333 mutations to glycine, arginine, or lysine also create a hyperactive kinase, while mutation to aspartic acid decreases ATR activity. S1333A-ATR maintains the G2 checkpoint and promotes completion of DNA replication after transient exposure to replication stress but the less active kinase, S1333D-ATR, has modest defects in both of these functions. While we find no evidence that S1333 is phosphorylated in cultured cells, our data indicate that small changes in the HEAT repeats can have large effects on kinase activity. These mutants may serve as useful tools for future studies of the ATR pathway.


Assuntos
Serina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Quinase 1 do Ponto de Checagem , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Células HCT116 , Células HEK293 , Humanos , Hidroxiureia/farmacologia , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Ligação Proteica , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta
5.
J Biol Chem ; 286(43): 37320-7, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21908846

RESUMO

ATR (ataxia telangiectasia-mutated and Rad3-related) contains 16 conserved candidate autophosphorylation sites that match its preferred S/TQ consensus. To determine whether any is functionally important, we mutated the 16 candidate residues to alanine in a single cDNA to create a 16A-ATR mutant. The 16A-ATR mutant maintains kinase and G(2) checkpoint activities. However, it fails to rescue the essential function of ATR in maintaining cell viability and fails to promote replication recovery from a transient exposure to replication stress. Further analysis identified T1566A/T1578A/T1589A (3A-ATR) as critical mutations causing this separation of function activity. Secondary structure predictions indicate that these residues occur in a region between ATR HEAT repeats 31R and 32R that aligns with regions of ATM and DNA-PK containing regulatory autophosphorylation sites. Although this region is important for ATR function, the 3A-ATR residues do not appear to be sites of autophosphorylation. Nevertheless, our analysis identifies an important regulatory region of ATR that is shared among the PI3K-related protein kinase family. Furthermore, our data indicate that the essential function of ATR for cell viability is linked to its function in promoting proper replication in the context of replication stress and is independent of G(2) checkpoint activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G2/fisiologia , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Substituição de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Sobrevivência Celular/fisiologia , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Proteínas Supressoras de Tumor/genética
6.
J Biol Chem ; 286(33): 28707-28714, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21705319

RESUMO

The DNA damage response kinases ataxia telangiectasia-mutated (ATM), DNA-dependent protein kinase (DNA-PK), and ataxia telangiectasia-mutated and Rad3-related (ATR) signal through multiple pathways to promote genome maintenance. These related kinases share similar methods of regulation, including recruitment to specific nucleic acid structures and association with protein activators. ATM and DNA-PK also are regulated via phosphorylation, which provides a convenient biomarker for their activity. Whether phosphorylation regulates ATR is unknown. Here we identify ATR Thr-1989 as a DNA damage-regulated phosphorylation site. Selective inhibition of ATR prevents Thr-1989 phosphorylation, and phosphorylation requires ATR activation. Cells engineered to express only a non-phosphorylatable T1989A mutant exhibit a modest ATR functional defect. Our results suggest that, like ATM and DNA-PK, phosphorylation regulates ATR, and phospho-peptide specific antibodies to Thr-1989 provide a proximal marker of ATR activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Treonina/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/fisiologia , Humanos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Treonina/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Biochem J ; 436(3): 527-36, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21615334

RESUMO

Preservation of genome integrity via the DNA-damage response is critical to prevent disease. ATR (ataxia telangiectasia mutated- and Rad3-related) is essential for life and functions as a master regulator of the DNA-damage response, especially during DNA replication. ATR controls and co-ordinates DNA replication origin firing, replication fork stability, cell cycle checkpoints and DNA repair. Since its identification 15 years ago, a model of ATR activation and signalling has emerged that involves localization to sites of DNA damage and activation through protein-protein interactions. Recent research has added an increasingly detailed understanding of the canonical ATR pathway, and an appreciation that the canonical model does not fully capture the complexity of ATR regulation. In the present article, we review the ATR signalling process, focusing on mechanistic findings garnered from the identification of new ATR-interacting proteins and substrates. We discuss how to incorporate these new insights into a model of ATR regulation and point out the significant gaps in our understanding of this essential genome-maintenance pathway.


Assuntos
Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/fisiologia , Reparo do DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/fisiologia , Proteínas de Transporte/fisiologia , Dano ao DNA , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi , Humanos , Proteína 1 Homóloga a MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Proteínas Nucleares/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ets/fisiologia , Transdução de Sinais/genética
8.
Mol Cell ; 35(3): 258-9, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19683490

RESUMO

In this issue of Molecular Cell, Huang et al. (2009) describe two heterotrimeric single-stranded DNA binding complexes, SOSS1 and SOSS2, that function downstream of the MRN complex to promote DNA repair and the G2/M checkpoint.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/fisiologia , Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Humanos , Estabilidade Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia
9.
Proc Natl Acad Sci U S A ; 105(48): 18730-4, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19028869

RESUMO

The Saccharomyces cerevisiae Mec1-Ddc2 checkpoint kinase complex (the ortholog to human ATR-ATRIP) is an essential regulator of genomic integrity. The S. cerevisiae BRCT repeat protein Dpb11 functions in the initiation of both DNA replication and cell cycle checkpoints. Here, we report a genetic and physical interaction between Dpb11 and Mec1-Ddc2. A C-terminal domain of Dpb11 is sufficient to associate with Mec1-Ddc2 and strongly stimulates the kinase activity of Mec1 in a Ddc2-dependent manner. Furthermore, Mec1 phosphorylates Dpb11 and thereby amplifies the stimulating effect of Dpb11 on Mec1-Ddc2 kinase activity. Thus, Dpb11 is a functional ortholog of human TopBP1, and the Mec1/ATR activation mechanism is conserved from yeast to humans.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/genética , Dano ao DNA , Reparo do DNA , Ativação Enzimática , Humanos , Hidroxiureia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Inibidores da Síntese de Ácido Nucleico/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA