Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Neural Dev ; 18(1): 1, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631891

RESUMO

BACKGROUND: We previously identified Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) as a marker of long-term neurogenic stem cells in the lateral wall of the adult mouse brain. The morphology of the stem cells thus identified differed from the canonical B1 type stem cells, raising a question about their cellular origin. Thus, we investigated the development of these stem cells in the postnatal and juvenile brain. Furthermore, because Lrig1 is a known regulator of quiescence, we also investigated the effect(s) of its deletion on the cellular proliferation in the lateral wall. METHODS: To observe the development of the Lrig1-lineage stem cells, genetic inducible fate mapping studies in combination with thymidine analog administration were conducted using a previously published Lrig1T2A-iCreERT2 mouse line. To identify the long-term consequence(s) of Lrig1 germline deletion, old Lrig1 knock-out mice were generated using two different Lrig1 null alleles in the C57BL/6J background. The lateral walls from these mice were analyzed using an optimized whole mount immunofluorescence protocol and confocal microscopy. RESULTS: We observed the Lrig1-lineage labeled cells with morphologies consistent with neurogenic stem cell identity in postnatal, juvenile, and adult mouse brains. Interestingly, when induced at postnatal or juvenile ages, morphologically distinct cells were revealed, including cells with the canonical B1 type stem cell morphology. Almost all of the presumptive stem cells labeled were non-proliferative at these ages. In the old Lrig1 germline knock-out mice, increased proliferation was observed compared to wildtype littermates without concomitant increase in apoptosis. CONCLUSIONS: Once set aside during embryogenesis, the Lrig1-lineage stem cells remain largely quiescent during postnatal and juvenile development until activation in adult age. The absence of premature proliferative exhaustion in the Lrig1 knock-out stem cell niche during aging is likely due to a complex cascade of effects on the adult stem cell pool. Thus, we suggest that the adult stem cell pool size may be genetically constrained via Lrig1.


Assuntos
Células-Tronco Adultas , Ventrículos Laterais , Animais , Camundongos , Células-Tronco Adultas/metabolismo , Proliferação de Células , Ventrículos Laterais/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
4.
Neural Dev ; 15(1): 3, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183906

RESUMO

BACKGROUND: Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) regulates stem cell quiescence. As a marker, it identifies stem cells in multiple organs of the mouse. We had detected Lrig1 expression in cultured Id1high neural stem cells obtained from the lateral walls lining the lateral ventricles of the adult mouse brain. Thus, we investigated whether Lrig1 expression also identifies stem cells in that region in vivo. METHODS: Publicly available single cell RNA sequencing datasets were analyzed with Seurat and Monocle. The Lrig1+ cells were lineage traced in vivo with a novel non-disruptive co-translational Lrig1T2A-iCreERT2 reporter mouse line. RESULTS: Analysis of single cell RNA sequencing datasets suggested Lrig1 was highly expressed in the most primitive stem cells of the neurogenic lineage in the lateral wall of the adult mouse brain. In support of their neurogenic stem cell identity, cell cycle entry was only observed in two morphologically distinguishable Lrig1+ cells that could also be induced into activation by Ara-C infusion. The Lrig1+ neurogenic stem cells were observed throughout the lateral wall. Neuroblasts and neurons were lineage traced from Lrig1+ neurogenic stem cells at 1 year after labeling. CONCLUSIONS: We identified Lrig1 as a marker of long-term neurogenic stem cells in the lateral wall of the mouse brain. Lrig1 expression revealed two morphotypes of the Lrig1+ cells that function as long-term neurogenic stem cells. The spatial distribution of the Lrig1+ neurogenic stem cells suggested all subtypes of the adult neurogenic stem cells were labeled.


Assuntos
Ventrículos Laterais/metabolismo , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Adultas , Animais , Células Cultivadas , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Embrião de Mamíferos , Ventrículos Laterais/citologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Análise de Sequência de RNA
5.
Stem Cell Reports ; 3(5): 716-24, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25418719

RESUMO

LGR5 and BMI1 mark intestinal stem cells in crypt base columnar cells and +4 position cells, respectively, but characterization of functional markers in these cell populations is limited. ID1 maintains the stem cell potential of embryonic, neural, and long-term repopulating hematopoietic stem cells. Here, we show in both human and mouse intestine that ID1 is expressed in cycling columnar cells, +4 position cells, and transit-amplifying cells in the crypt. Lineage tracing revealed ID1+ cells to be self-renewing, multipotent stem/progenitor cells that are responsible for the long-term renewal of the intestinal epithelium. Single ID1+ cells can generate long-lived organoids resembling mature intestinal epithelium. Complete knockout of Id1 or selective deletion of Id1 in intestinal epithelium or in LGR5+ stem cells sensitizes mice to chemical-induced colon injury. These experiments identify ID1 as a marker for intestinal stem/progenitor cells and demonstrate a role for ID1 in maintaining the potential for repair in response to colonic injury.


Assuntos
Biomarcadores/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco Multipotentes/metabolismo , Animais , Proliferação de Células , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/lesões , Colo/metabolismo , Sulfato de Dextrana , Expressão Gênica , Humanos , Imuno-Histoquímica , Proteína 1 Inibidora de Diferenciação/genética , Mucosa Intestinal/citologia , Intestinos/citologia , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Organoides/citologia , Organoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Nat Cell Biol ; 14(5): 477-87, 2012 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-22522171

RESUMO

Stem-cell functions require activation of stem-cell-intrinsic transcriptional programs and extracellular interaction with a niche microenvironment. How the transcriptional machinery controls residency of stem cells in the niche is unknown. Here we show that Id proteins coordinate stem-cell activities with anchorage of neural stem cells (NSCs) to the niche. Conditional inactivation of three Id genes in NSCs triggered detachment of embryonic and postnatal NSCs from the ventricular and vascular niche, respectively. The interrogation of the gene modules directly targeted by Id deletion in NSCs revealed that Id proteins repress bHLH-mediated activation of Rap1GAP, thus serving to maintain the GTPase activity of RAP1, a key mediator of cell adhesion. Preventing the elevation of the Rap1GAP level countered the consequences of Id loss on NSC-niche interaction and stem-cell identity. Thus, by preserving anchorage of NSCs to the extracellular environment, Id activity synchronizes NSC functions to residency in the specialized niche.


Assuntos
Antígenos de Neoplasias/fisiologia , Adesão Celular/fisiologia , Células-Tronco Neurais/citologia , Animais , Antígenos de Neoplasias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Ativadoras de GTPase/genética , Camundongos
7.
J Cell Sci ; 125(Pt 5): 1309-17, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22349695

RESUMO

Satellite cells are muscle stem cells that have important roles in postnatal muscle growth and adult muscle regeneration. Although fast- and slow-dividing populations in activated satellite cells have been observed, the functional differences between them remain unclear. Here we elucidated the relationship between proliferation behaviour and satellite cell function. To assess the frequency of cell division, satellite cells isolated from mouse EDL muscle were labelled with the fluorescent dye PKH26, stimulated to proliferate and then sorted by FACS. The vast majority of activated satellite cells were PKH26(low) fast-dividing cells, whereas PKH26(high) slow-dividing cells were observed as a minority population. The fast-dividing cells generated a higher number of differentiated and self-renewed cells compared with the slow-dividing cells. However, cells derived from the slow-dividing population formed secondary myogenic colonies when passaged, whereas those from the fast-dividing population rapidly underwent myogenic differentiation without producing self-renewing cells after a few rounds of cell division. Furthermore, slow-dividing cells transplanted into injured muscle extensively contributed to muscle regeneration in vivo. Id1, a HLH protein, was expressed by all activated satellite cells, but the expression level varied within the slow-dividing cell population. We show that the slow-dividing cells retaining long-term self-renewal ability are restricted to an undifferentiated population that express high levels of Id1 protein (PKH26(high)Id1(high) population). Finally, genome-wide gene expression analysis described the molecular characteristics of the PKH26(high)Id1(high) population. Taken together, our results indicate that undifferentiated slow-dividing satellite cells retain stemness for generating progeny capable of long-term self-renewal, and so might be essential for muscle homeostasis throughout life.


Assuntos
Divisão Celular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Corantes Fluorescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo
8.
Cancer Cell ; 21(1): 11-24, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22264785

RESUMO

Within high-grade gliomas, the precise identities and functional roles of stem-like cells remain unclear. In the normal neurogenic niche, ID (Inhibitor of DNA-binding) genes maintain self-renewal and multipotency of adult neural stem cells. Using PDGF- and KRAS-driven murine models of gliomagenesis, we show that high Id1 expression (Id1(high)) identifies tumor cells with high self-renewal capacity, while low Id1 expression (Id1(low)) identifies tumor cells with proliferative potential but limited self-renewal capacity. Surprisingly, Id1(low) cells generate tumors more rapidly and with higher penetrance than Id1(high) cells. Further, eliminating tumor cell self-renewal through deletion of Id1 has modest effects on animal survival, while knockdown of Olig2 within Id1(low) cells has a significant survival benefit, underscoring the importance of non-self-renewing lineages in disease progression.


Assuntos
Proliferação de Células , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Técnicas de Silenciamento de Genes , Glioma/induzido quimicamente , Glioma/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos
9.
Dev Biol ; 349(1): 53-64, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20937270

RESUMO

The Id1 and Id3 genes play major roles during cardiac development, despite their expression being confined to non-myocardial layers (endocardium-endothelium-epicardium). We previously described that Id1Id3 double knockout (dKO) mouse embryos die at mid-gestation from multiple cardiac defects, but early lethality precluded the studies of the roles of Id in the postnatal heart. To elucidate postnatal roles of Id genes, we ablated the Id3 gene and conditionally ablated the Id1 gene in the endothelium to generate conditional KO (cKO) embryos. We observed cardiac phenotypes at birth and at 6 months of age. Half of the Id cKO mice died at birth. Postnatal demise was associated with cardiac enlargement and defects in the ventricular septum, trabeculation and vasculature. Surviving Id cKO mice exhibited fibrotic vasculature, cardiac enlargement and decreased cardiac function. An abnormal vascular response was also observed in the healing of excisional skin wounds of Id cKO mice. Expression patterns of vascular, fibrotic and hypertrophic markers were altered in the Id cKO hearts, but addition of Insulin-Like Growth Factor binding protein-3 (IGFbp3) reversed gene expression profiles of vascular and fibrotic, but not hypertrophic markers. Thus, ablation of Id genes in the vasculature leads to distinct postnatal cardiac phenotypes. These findings provide important insights into the role/s of the endocardial network of the endothelial lineage in the development of cardiac disease, and highlight IGFbp3 as a potential link between Id and its vascular effectors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Cardiopatias/patologia , Proteína 1 Inibidora de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/deficiência , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/citologia , Fenótipo , Cicatrização
10.
Nat Biotechnol ; 28(2): 161-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081865

RESUMO

Previous efforts to differentiate human embryonic stem cells (hESCs) into endothelial cells have not achieved sustained expansion and stability of vascular cells. To define vasculogenic developmental pathways and enhance differentiation, we used an endothelial cell-specific VE-cadherin promoter driving green fluorescent protein (GFP) (hVPr-GFP) to screen for factors that promote vascular commitment. In phase 1 of our method, inhibition of transforming growth factor (TGF)beta at day 7 of differentiation increases hVPr-GFP(+) cells by tenfold. In phase 2, TGFbeta inhibition maintains the proliferation and vascular identity of purified endothelial cells, resulting in a net 36-fold expansion of endothelial cells in homogenous monolayers, which exhibited a transcriptional profile of Id1(high)VEGFR2(high)VE-cadherin(+) ephrinB2(+). Using an Id1-YFP hESC reporter line, we showed that TGFbeta inhibition sustains Id1 expression in hESC-derived endothelial cells and that Id1 is required for increased proliferation and preservation of endothelial cell commitment. Our approach provides a serum-free method for differentiation and long-term maintenance of hESC-derived endothelial cells at a scale relevant to clinical application.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Diferenciação Celular , Células Cultivadas , Humanos
11.
Cell Stem Cell ; 5(5): 515-26, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19896442

RESUMO

Defining the molecular identity of stem cells may be critical for formulating a rational strategy for the therapeutic intervention of stem cell dysfunction. We find that high expression of Id1, a dominant-negative helix-loop-helix transcriptional regulator, identifies a rare population of GFAP(+) astrocytes with stem cell attributes among the subventricular astrocytes in the adult brain. The rare, long-lived, and relatively quiescent Id1(high) astrocytes with morphology characteristic of B1 type astrocytes self-renew and generate migratory neuroblasts that differentiate into olfactory bulb interneurons. Cultured Id1(high) neural stem cells can self-renew asymmetrically and generate a stem and a differentiated cell expressing progressively lower levels of Id1, revealing an Id1 gradient in unperturbed cells of subventricular neurogenic lineages. Moreover, Id genes are necessary to confer self-renewal capacity, a characteristic of stem cell identity. We suggest that high expression of a single transcriptional regulator, Id1, molecularly defines the long-sought-after B1 type adult neural stem cells.


Assuntos
Células-Tronco Adultas/metabolismo , Antígenos de Diferenciação/biossíntese , Astrócitos/metabolismo , Proteína 1 Inibidora de Diferenciação/biossíntese , Células-Tronco Adultas/patologia , Animais , Antígenos de Diferenciação/genética , Astrócitos/patologia , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteína 1 Inibidora de Diferenciação/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/genética
12.
Hippocampus ; 16(10): 875-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16941454

RESUMO

FoxG1 (formerly BF-1) encodes a transcription factor that regulates neurogenesis in the embryonic telencephalon. The current study suggests that FoxG1 also regulates neurogenesis in the postnatal hippocampus. FoxG1 continues to be strongly expressed in areas of known postnatal neurogenesis, including the subventricular zone of the lateral ventricle and the dentate gyrus (DG) of the hippocampus. Remarkably, FoxG1+/- mice have a 60% decrease in the total number of hippocampal dentate granule cells that is related to a loss of DG neurogenesis. Comparison of acute and chronic BrdU labeling, and PSA-NCAM staining suggests that the stage at which this loss of neurogenesis occurs progresses with age. Juvenile mice FoxG1+/- primarily show failed apparent survival of postnatally born DG neurons, whereas adult FoxG1+/- mice also show impairment of proliferation and initial DG neuron differentiation. Consistent with this process predominantly affecting postnatal hippocampal neurogenesis, BrdU pulses at embryonic days 16, 17, and 18 labels a higher percentage of DG cells in 6-week-old FoxG1+/- mice than in littermate controls. In contrast to the marked effect of FoxG1 haploinsufficiency on postnatal hippocampal neurogenesis, postnatal neurogenesis of olfactory bulb interneurons is grossly unaffected. Behaviorally, FoxG1+/- mice show hyperlocomotion and impaired habituation in the open field, and a severe deficit in contextual fear conditioning that are suggestive of impaired hippocampal function. Although mechanistic connections between FoxG1 haploinsufficiency and either failed postnatal DG neurogenesis or the behavioral deficits remain to be elucidated, these results present a new model system for impaired postnatal neurogenesis in the DG of adult mice.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Hipocampo/anormalidades , Hipocampo/crescimento & desenvolvimento , Transtornos da Memória/genética , Proteínas do Tecido Nervoso/genética , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/fisiologia , Bromodesoxiuridina , Sobrevivência Celular/genética , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Predisposição Genética para Doença/genética , Haplótipos , Hipocampo/fisiopatologia , Hipercinese/genética , Hipercinese/metabolismo , Hipercinese/fisiopatologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Fenótipo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA