Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(9): 2905-2917, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560201

RESUMO

Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.


Assuntos
Regulação da Expressão Gênica de Plantas , Sementes , Plantas/genética , Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
2.
Methods Mol Biol ; 2295: 219-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047980

RESUMO

The fatty acid biosynthetic cycle is predicated on an acyl carrier protein (ACP) scaffold where two carbon acetyl groups are added in a chain elongation process through a series of repeated enzymatic steps. The chain extension is terminated by hydrolysis with a thioesterase or direct transfer of the acyl group to a glycerophospholipid by an acyltransferase. Methods for analysis of the concentrations of acyl chains attached to ACPs are lacking but would be informative for studies in lipid metabolism. We describe a method to profile and quantify the levels of acyl-ACPs in plants, bacteria and mitochondria of animals and fungi that represent Type II fatty acid biosynthetic systems. ACPs of Type II systems have a highly conserved Asp-Ser-Leu-Asp (DSLD) amino acid sequence at the attachment site for 4'-phosphopantetheinyl arm carrying the acyl chain. Three amino acids of the conserved sequence can be cleaved away from the remainder of the protein using an aspartyl protease. Thus, partially purified protein can be enzymatically hydrolyzed to produce an acyl chain linked to a tripeptide via the 4'-phosphopantetheinyl group. After ionization and fragmentation, the corresponding fragment ion is detected by a triple quadrupole mass spectrometer using a multiple reaction monitoring method. 15N isotopically labeled acyl-ACPs generated in high amounts are used with an isotope dilution strategy to quantify the absolute levels of each acyl group attached to the acyl carrier protein scaffold.


Assuntos
Proteína de Transporte de Acila/análise , Proteína de Transporte de Acila/isolamento & purificação , Cromatografia Líquida/métodos , Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/metabolismo , Sequência de Aminoácidos/genética , Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Sequência Conservada/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/química , Lipogênese/genética , Mitocôndrias/metabolismo , Plantas/metabolismo , Espectrometria de Massas em Tandem/métodos
3.
Plant Cell ; 32(4): 820-832, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060179

RESUMO

Acyl carrier proteins (ACPs) are the scaffolds for fatty acid biosynthesis in living systems, rendering them essential to a comprehensive understanding of lipid metabolism. However, accurate quantitative methods to assess individual acyl-ACPs do not exist. We developed a robust method to quantify acyl-ACPs to the picogram level. We successfully identified acyl-ACP elongation intermediates (3-hydroxyacyl-ACPs and 2,3-trans-enoyl-ACPs) and unexpected medium-chain (C10:1, C14:1) and polyunsaturated long-chain (C16:3) acyl-ACPs, indicating both the sensitivity of the method and how current descriptions of lipid metabolism and ACP function are incomplete. Such ACPs are likely important to medium-chain lipid production for fuels and highlight poorly understood lipid remodeling events in the chloroplast. The approach is broadly applicable to type II fatty acid synthase systems found in plants and bacteria as well as mitochondria from mammals and fungi because it capitalizes on a highly conserved Asp-Ser-Leu-Asp amino acid sequence in ACPs to which acyl groups attach. Our method allows for sensitive quantification using liquid chromatography-tandem mass spectrometry with de novo-generated standards and an isotopic dilution strategy and will fill a gap in our understanding, providing insights through quantitative exploration of fatty acid biosynthesis processes for optimal biofuels, renewable feedstocks, and medical studies in health and disease.


Assuntos
Proteína de Transporte de Acila/metabolismo , Ácidos Graxos/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteína de Transporte de Acila/química , Acilação , Sequência de Aminoácidos , Vias Biossintéticas , Brassicaceae/metabolismo , Cromatografia Líquida , Sequência Conservada , Folhas de Planta/metabolismo , Sementes/metabolismo
4.
Int J Mol Sci ; 20(13)2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284614

RESUMO

We examined the substrate preference of Cuphea paucipetala acyl-ACP thioesterases, CpFatB4 and CpFatB5, and gene expression changes associated with the modification of lipid composition in the seed, using Brassica napus transgenic plants overexpressing CpFatB4 or CpFatB5 under the control of a seed-specific promoter. CpFatB4 seeds contained a higher level of total saturated fatty acid (FA) content, with 4.3 times increase in 16:0 palmitic acid, whereas CpFatB5 seeds showed approximately 3% accumulation of 10:0 and 12:0 medium-chain FAs, and a small increase in other saturated FAs, resulting in higher levels of total saturated FAs. RNA-Seq analysis using entire developing pods at 8, 25, and 45 days after flowering (DAF) showed up-regulation of genes for ß-ketoacyl-acyl carrier protein synthase I/II, stearoyl-ACP desaturase, oleate desaturase, and linoleate desaturase, which could increase unsaturated FAs and possibly compensate for the increase in 16:0 palmitic acid at 45 DAF in CpFatB4 transgenic plants. In CpFatB5 transgenic plants, many putative chloroplast- or mitochondria-encoded genes were identified as differentially expressed. Our results report comprehensive gene expression changes induced by alterations of seed FA composition and reveal potential targets for further genetic modifications.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sementes/enzimologia , Sementes/genética , Tioléster Hidrolases/genética , Brassica napus/crescimento & desenvolvimento , Ontologia Genética , Genes de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Tioléster Hidrolases/metabolismo , Transcriptoma/genética
5.
Pestic Biochem Physiol ; 152: 38-44, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30497709

RESUMO

We conducted biochemical and physiological experiments to investigate the mode of action of tiafenacil (Terrad'or™), a new protoporphyrinogen IX oxidase (PPO)-inhibiting pyrimidinedione herbicide. Analysis of the half-maximal inhibitory concentration (IC50) against recombinant PPO enzymes from various plant species, including amaranth (Amaranthus tuberculatus), soybean (Glycine max), arabidopsis (Arabidopsis thaliana), and rapeseed (Brassica napus), showed that tiafenacil had an IC50 of 22 to 28 nM, similar to the pyrimidinedione herbicides butafenacil and saflufenacil and the N-phenylphthalimide herbicide flumioxazin. By contrast, tiafenacil exhibited 3- to 134-fold lower IC50 values than the diphenyl ether herbicides fomesafen, oxyfluorfen, and acifluorfen. Tiafenacil is non-selective and is herbicidal to both dicots and monocots, such as the weeds velvetleaf (Abutilon theophrasti), amaranth, and barnyardgrass (Echinochloa crus-galli) as well as the crops soybean, rapeseed, rice (Oryza sativa), and maize (Zea mays) at concentrations ranging from 1 to 50 µM. Treatment of plant tissue with tiafenacil in darkness resulted in the accumulation of protoporphyrin IX. Subsequent exposure to light increased the content of malondialdehyde and significantly decreased the Fv/Fm values of chlorophyll fluorescence. The results suggest that tiafenacil is a new PPO-inhibiting pyrimidinedione herbicide.


Assuntos
Herbicidas/farmacologia , Magnoliopsida/efeitos dos fármacos , Protoporfirinogênio Oxidase/antagonistas & inibidores , Pirimidinonas/farmacologia , Magnoliopsida/enzimologia , Magnoliopsida/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Protoporfirinogênio Oxidase/metabolismo
6.
J Exp Bot ; 66(14): 4251-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25969557

RESUMO

Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina ß-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.


Assuntos
Cuphea/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Cuphea/embriologia , Cuphea/enzimologia , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Palmitoil-CoA Hidrolase/química , Folhas de Planta/metabolismo , Homologia de Sequência de Aminoácidos
7.
Proc Natl Acad Sci U S A ; 111(3): 1204-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398521

RESUMO

Degradation of unusual fatty acids through ß-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [(14)C]acetate and [(3)H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [(14)C]acetate and [(14)C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl-CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl-CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos/biossíntese , Lipídeos/química , Acetil-CoA Carboxilase/metabolismo , Retículo Endoplasmático/metabolismo , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxigênio/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Sementes/metabolismo , Fatores de Tempo , Transgenes , Triglicerídeos/metabolismo
8.
Plant Biotechnol J ; 11(6): 759-69, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551501

RESUMO

Camelina (Camelina sativa), a Brassicaceae oilseed, has received recent interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve the quality and content of the seed protein-rich meal and oil, which is enriched in oxidatively unstable polyunsaturated fatty acids that are deleterious for biodiesel. To identify candidate genes for meal and oil quality improvement, a transcriptome reference was built from 2047 Sanger ESTs and more than 2 million 454-derived sequence reads, representing genes expressed in developing camelina seeds. The transcriptome of approximately 60K transcripts from 22 597 putative genes includes camelina homologues of nearly all known seed-expressed genes, suggesting a high level of completeness and usefulness of the reference. These sequences included candidates for 12S (cruciferins) and 2S (napins) seed storage proteins (SSPs) and nearly all known lipid genes, which have been compiled into an accessible database. To demonstrate the utility of the transcriptome for seed quality modification, seed-specific RNAi lines deficient in napins were generated by targeting 2S SSP genes, and high oleic acid oil lines were obtained by targeting FATTY ACID DESATURASE 2 (FAD2) and FATTY ACID ELONGASE 1 (FAE1). The high sequence identity between Arabidopsis thaliana and camelina genes was also exploited to engineer high oleic lines by RNAi with Arabidopsis FAD2 and FAE1 sequences. It is expected that these transcriptomic data will be useful for breeding and engineering of additional camelina seed traits and for translating findings from the model Arabidopsis to an oilseed crop.


Assuntos
Brassicaceae/genética , Óleos de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Transcriptoma/genética , Pesquisa Translacional Biomédica , Acil Coenzima A/metabolismo , Arabidopsis/genética , Sequência de Bases , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/crescimento & desenvolvimento
9.
J Exp Bot ; 58(6): 1421-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17329262

RESUMO

Crepis alpina acetylenase is a variant FAD2 desaturase that catalyses the insertion of a triple bond at the Delta12 position of linoleic acid, forming crepenynic acid in developing seeds. Seeds contain a high level of crepenynic acid but other tissues contain none. Using reverse transcriptase-coupled PCR (RT-PCR), acetylenase transcripts were identified in non-seed C. alpina tissues, which were highest in flower heads. To understand why functional expression of the acetylenase is limited to seeds, genes that affect acetylenase activity by providing substrate (FAD2) or electrons (cytochrome b5), or that compete for substrate (FAD3), were cloned. RT-PCR analysis indicated that the availability of a preferred cytochrome b5 isoform is not a limiting factor. Developing seeds co-express acetylenase and FAD2 isoform 2 (FAD2-2) at high levels. Flower heads co-express FAD2-3 and FAD3 at high levels, and FAD2-2 and acetylenase at moderate levels. FAD2-3 was not expressed in developing seed. Real-time RT-PCR absolute transcript quantitation showed 10(4)-fold higher acetylenase expression in developing seeds than in flower heads. Collectively, the results show that both the acetylenase expression level and the co-expression of other desaturases may contribute to the tissue specificity of crepenynate production. Helianthus annuus contains a Delta12 acetylenase in a polyacetylene biosynthetic pathway, so does not accumulate crepenynate. Real-time RT-PCR analysis showed relatively strong acetylenase expression in young sunflowers. Acetylenase transcription is observed in both species without accumulation of the enzymatic product, crepenynate. Functional expression of acetylenase appears to be affected by competition and collaboration with other enzymes.


Assuntos
Crepis/genética , Ácidos Graxos Dessaturases/genética , Ácido Linoleico/biossíntese , Ácidos Oleicos/biossíntese , Transcrição Gênica , Alcinos , Clonagem Molecular , Citocromos b5/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Ácidos Graxos não Esterificados/biossíntese , Amplificação de Genes , Genoma de Planta , Helianthus/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Sementes/fisiologia
10.
Planta ; 226(2): 381-94, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17323080

RESUMO

The surface of plants is covered by cuticular wax, which contains a mixture of very long-chain fatty acid (VLCFA) derivatives. This wax surface provides a hydrophobic barrier which reduces non-stomatal water loss. One component of the cuticular wax is the alkyl esters, which typically contain a VLCFA esterified to an alcohol of a similar length. As part of an EST project, we recently identified an acyltransferase with 19% sequence identity (amino acid) to a bacterial 'bifunctional' wax-ester synthase/diacylglycerol acyltransferase (WS/DGAT). Northern analysis revealed that this petunia homologue was expressed predominantly within the petals. The cDNA encoding the WS/DGAT homologue was introduced into a yeast strain deficient in triacylglycerol biosynthesis. The expressed protein failed to restore triacylglycerol biosynthesis, indicating that it lacked DGAT activity. However, isoamyl esters of fatty acids were detected, which suggested that the petunia cDNA encoded a wax-synthase. Waxes were extracted from petunia petals and leaves. The petal wax extract was rich in VLCFA esters of methyl, isoamyl, and short-to-medium straight chain alcohols (C4-C12). These low molecular weight wax-esters were not present in leaf wax. In-vitro enzymes assays were performed using the heterologously expressed protein and 14C-labelled substrates. The expressed protein was membrane bound, and displayed a preference for medium chain alcohols and saturated very long-chain acyl-CoAs. In fact, the activity would be sufficient to produce most of the low molecular wax-esters present in petals, with methyl-esters being the exception. This work is the first characterization of a eukaryotic protein from the WS/DGAT family.


Assuntos
Aciltransferases/fisiologia , Proteínas de Membrana/fisiologia , Petunia/metabolismo , Proteínas de Plantas/fisiologia , Ceras/metabolismo , Aciltransferases/química , Aciltransferases/genética , Sequência de Aminoácidos , Clonagem Molecular , Ésteres/metabolismo , Flores/enzimologia , Flores/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Petunia/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Especificidade por Substrato
11.
Biochemistry ; 45(45): 13487-99, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17087502

RESUMO

Acetobacter aceti converts ethanol to acetic acid, and strains highly resistant to both are used to make vinegar. A. aceti survives acetic acid exposure by tolerating cytoplasmic acidification, which implies an unusual adaptation of cytoplasmic components to acidic conditions. A. aceti citrate synthase (AaCS), a hexameric type II citrate synthase, is required for acetic acid resistance and, therefore, would be expected to function at low pH. Recombinant AaCS has intrinsic acid stability that may be a consequence of strong selective pressure to function at low pH, and unexpectedly high thermal stability for a protein that has evolved to function at approximately 30 degrees C. The crystal structure of AaCS, complexed with oxaloacetate (OAA) and the inhibitor carboxymethyldethia-coenzyme A (CMX), was determined to 1.85 A resolution using protein purified by a tandem affinity purification procedure. This is the first crystal structure of a "closed" type II CS, and its active site residues interact with OAA and CMX in the same manner observed in the corresponding type I chicken CS.OAA.CMX complex. While AaCS is not regulated by NADH, it retains many of the residues used by Escherichia coli CS (EcCS) for NADH binding. The surface of AaCS is abundantly decorated with basic side chains and has many fewer uncompensated acidic charges than EcCS; this constellation of charged residues is stable in varied pH environments and may be advantageous in the A. aceti cytoplasm.


Assuntos
Acetobacter/enzimologia , Citrato (si)-Sintase/antagonistas & inibidores , Citrato (si)-Sintase/química , Sítios de Ligação , Citrato (si)-Sintase/isolamento & purificação , Cristalização , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , NAD/farmacologia , Dobramento de Proteína , Estrutura Quaternária de Proteína
12.
J Mol Biol ; 351(2): 355-70, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16005887

RESUMO

Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. This reaction is an initial degradation reaction of the carbazole degradation pathway by various bacterial strains. Only a limited number of Rieske non-heme iron oxygenase systems (ROSs) can catalyze this novel reaction, termed angular dioxygenation. Angular dioxygenation is also involved in the degradation pathways of carbazole-related compounds, dioxin, and CARDO can catalyze the angular dioxygenation for dioxin. CARDO consists of a terminal oxygenase component (CARDO-O), and the electron transport components, ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R). CARDO-O has a homotrimeric structure, and governs the substrate specificity of CARDO. Here, we have determined the crystal structure of CARDO-O of Janthinobacterium sp. strain J3 at a resolution of 1.95A. The alpha3 trimeric overall structure of the CARDO-O molecule roughly corresponds to the alpha3 partial structures of other terminal oxygenase components of ROSs that have the alpha3beta3 configuration. The CARDO-O structure is a first example of the terminal oxygenase components of ROSs that have the alpha3 configuration, and revealed the presence of the specific loops that interact with a neighboring subunit, which is proposed to be indispensable for stable alpha3 interactions without structural beta subunits. The shape of the substrate-binding pocket of CARDO-O is markedly different from those of other oxygenase components involved in naphthalene and biphenyl degradation pathways. Docking simulations suggested that carbazole binds to the substrate-binding pocket in a manner suitable for catalysis of angular dioxygenation.


Assuntos
Proteínas de Bactérias/química , Dioxigenases/química , Oxigenases/química , Sítios de Ligação , Carbono/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Dioxinas/química , Elétrons , Escherichia coli/enzimologia , Ferredoxina-NADP Redutase/química , Histidina/química , Ferro/química , Modelos Químicos , Modelos Moleculares , Nitrogênio/química , Oxigênio/química , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Software , Eletricidade Estática , Especificidade por Substrato
13.
Proteins ; 58(4): 779-89, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15645447

RESUMO

The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 catalyzes the dioxygenation of carbazole; the 9aC carbon bonds to a nitrogen atom and its adjacent 1C carbon as the initial reaction in the mineralization pathway. The CARDO system is composed of ferredoxin reductase (CarAd), ferredoxin (CarAc), and terminal oxygenase (CarAa). CarAc acts as a mediator in the electron transfer from CarAd to CarAa. To understand the structural basis of the protein-protein interactions during electron transport in the CARDO system, the crystal structure of CarAc was determined at 1.9 A resolution by molecular replacement using the structure of BphF, the biphenyl 2,3-dioxygenase ferredoxin from Burkholderia cepacia strain LB400 as a search model. CarAc is composed of three beta-sheets, and the structure can be divided into two domains, a cluster-binding domain and a basal domain. The Rieske [2Fe-2S] cluster is located at the tip of the cluster-binding domain, where it is exposed to solvent. While the overall folding of CarAc and BphF is strongly conserved, the properties of their surfaces are very different from each other. The structure of the cluster-binding domain of CarAc is more compact and protruding than that of BphF, and the distribution of electric charge on its molecular surface is very different. Such differences are thought to explain why these ferredoxins can act as electron mediators in respective electron transport chains composed of different-featured components.


Assuntos
Proteínas de Bactérias/química , Dioxigenases/química , Ferredoxinas/química , Pseudomonas/enzimologia , Burkholderia cepacia/enzimologia , Carbono/química , Cristalografia por Raios X , Elétrons , Hidrogênio , Hidrolases/química , Íons , Ferro/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteômica/métodos
14.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 12 Pt 2): 2340-2, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583384

RESUMO

CarBaBb, the class III extradiol dioxygenase involved in carbazole degradation by Pseudomonas resinovorans CA10, was crystallized at 278 K by the hanging-drop vapour-diffusion method using PEG MME 550 as a precipitant. The crystals had a transparent thin square-pillar shape and belonged to space group P2(1)2(1)2, with unit-cell parameters a = 122.8, b = 144.6, c = 49.2 A, alpha = beta = gamma = 90 degrees . The crystals diffracted to a maximum resolution of 1.9 A and gave a data set with an overall R(merge) of 5.7% and a completeness of 98.6%. The V(M) value was 2.52 A(3) Da(-1), which indicated a solvent content of 51.2%.


Assuntos
Cristalografia por Raios X/métodos , Dioxigenases/química , Pseudomonas/enzimologia , Cristalização , Ligação de Hidrogênio , Modelos Químicos , Plasmídeos/metabolismo , Conformação Proteica , Solventes , Síncrotrons , Raios X
15.
Biochem Biophys Res Commun ; 303(2): 631-9, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12659866

RESUMO

2-Hydroxy-6-oxo-6-(2(')-aminophenyl)-hexa-2,4-dienoate hydrolases (CarC enzymes) from two carbazole-degrading bacteria were purified using recombinant Escherichia coli strains with the histidine (His)-tagged purification system. The His-tagged CarC (ht-CarC) enzymes from Pseudomonas resinovorans strain CA10 (ht-CarC(CA10)) and Janthinobacterium sp. strain J3 (ht-CarC(J3)) exhibited hydrolase activity toward 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate as the purified native CarC(CA10) did. ht-CarC(J3) was crystallized in the space group I422 with cell dimensions of a=b=130.3A, c=84.5A in the hexagonal setting, and the crystal structure of ht-CarC(J3) was determined at 1.86A resolution. The final refined model of ht-CarC(J3) yields an R-factor of 21.6%, although the electron-density corresponding to Ile146 to Asn155 was ambiguous in the final model. We compared the known structures of BphD from Rhodococcus sp. strain RHA1 and CumD from Pseudomonas fluorescens strain IP01. The backbone conformation of ht-CarC(J3) was better superimposed with CumD than with BphD(RHA1). The side-chain directions of Arg185 and Trp262 residues in the substrate binding pockets of these enzymes were different among these proteins, suggesting that these residues may take a conformational change during the catalytic cycles.


Assuntos
Oxirredutases/química , Oxirredutases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Bactérias/enzimologia , Carbazóis , Clonagem Molecular , Cristalografia por Raios X , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Histidina , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Subunidades Proteicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sitios de Sequências Rotuladas
16.
Biosci Biotechnol Biochem ; 67(1): 36-45, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12619671

RESUMO

2-Hydroxy-6-oxo-6-(2'-aminophenyl)-hexa-2,4dienoic acid [6-(2'-aminophenyl)-HODA] hydrolase, involved in carbazole degradation by Pseudomonas resinovorans strain CA10, was purified to near homogeneity from an overexpressing Escherichia coli strain. The enzyme was dimeric, and its optimum pH was 7.0-7.5. Phylogenetic analysis showed the close relationship of this enzyme to other hydrolases involved in the degradation of monocyclic aromatic compounds, and this enzyme was specific for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (6-phenyl-HODA), having little activity toward 2-hydroxy-6-oxohepta-2,4-dienoic acid and 2-hydroxymuconic semialdehyde. The enzyme had a Km of 2.51 microM and k(cat) of 2.14 (s(-1)) for 6-phenyl-HODA (50 mM sodium phosphate, pH 7.5, 25 degrees C). The effect of the presence of an amino group or hydroxyl group at the 2'-position of phenyl moiety of 6-phenyl-HODA on the enzyme activity was found to be small; the activity decreased only in the order of 6-(2'-aminophenyl)-HODA (2.44 U/mg) > 6-phenyl-HODA (1.99 U / mg) > 2-hydroxy-6-oxo-6-(2'-hydroxyphenyl)-hexa-2,4-dienoic acid (1.05 U/mg). The effects of 2'-substitution on the activity were in accordance with the predicted reactivity based on the calculated lowest unoccupied molecular orbital energy for these substrates.


Assuntos
Carbazóis/metabolismo , Hidrolases/química , Pseudomonas/metabolismo , Biotransformação , Meios de Cultura , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrolases/isolamento & purificação , Cinética , Filogenia , Plasmídeos , Pseudomonas/genética , Relação Estrutura-Atividade , Temperatura
17.
Appl Environ Microbiol ; 68(12): 5882-90, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12450807

RESUMO

The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 consists of terminal oxygenase (CarAa), ferredoxin (CarAc), and ferredoxin reductase (CarAd). Each component of CARDO was expressed in Escherichia coli strain BL21(DE3) as a native form (CarAa) or a His-tagged form (CarAc and CarAd) and was purified to apparent homogeneity. CarAa was found to be trimeric and to have one Rieske type [2Fe-2S] cluster and one mononuclear iron center in each monomer. Both His-tagged proteins were found to be monomeric and to contain the prosthetic groups predicted from the deduced amino acid sequence (His-tagged CarAd, one FAD and one [2Fe-2S] cluster per monomer protein; His-tagged CarAc, one Rieske type [2Fe-2S] cluster per monomer protein). Both NADH and NADPH were effective as electron donors for His-tagged CarAd. However, since the k(cat)/K(m) for NADH is 22.3-fold higher than that for NADPH in the 2,6-dichlorophenolindophenol reductase assay, NADH was supposed to be the physiological electron donor of CarAd. In the presence of NADH, His-tagged CarAc was reduced by His-tagged CarAd. Similarly, CarAa was reduced by His-tagged CarAc, His-tagged CarAd, and NADH. The three purified proteins could reconstitute the CARDO activity in vitro. In the reconstituted CARDO system, His-tagged CarAc seemed to be indispensable for electron transport, while His-tagged CarAd could be replaced by some unrelated reductases.


Assuntos
Proteínas de Bactérias , Dioxigenases , Oxigenases/isolamento & purificação , Pseudomonas/enzimologia , Sequência de Aminoácidos , Ferredoxina-NADP Redutase/isolamento & purificação , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/isolamento & purificação , Ferredoxinas/metabolismo , Dados de Sequência Molecular , NAD/metabolismo , NADP/metabolismo , Oxigenases/química , Oxigenases/metabolismo
18.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 8): 1350-2, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12136152

RESUMO

The terminal oxygenase component (CarAa) of carbazole 1,9a-dioxygenase from Pseudomonas resinovorans strain CA10 was crystallized at 293 K using the sitting-drop vapour-diffusion method under the following conditions: 0.1 M sodium citrate pH 5.6 in the presence of 0.5 M ammonium sulfate and 1.0 M lithium sulfate. By using additive reagents with the crystallizing condition, improved diffraction was obtained from the crystals. Preliminary X-ray diffraction analysis indicated that CarAa crystals are hexagonal and belong to space group P6(2) or P6(4), with unit-cell parameters a = b = 244.5, c = 65.7 A, alpha = beta = 90.0, gamma = 120.0 degrees. Diffraction data were collected to 3.0 A resolution. The V(M) value is 2.16 A(3) Da(-1), which indicates a solvent content of 43.0%. This is the first report of crystallization of the terminal oxygenase component of an angular-type dioxygenase.


Assuntos
Proteínas de Bactérias , Dioxigenases , Oxigenases/química , Pseudomonas/enzimologia , Cristalização , Cristalografia por Raios X , Estrutura Molecular , Oxigenases/isolamento & purificação , Oxigenases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...