Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349912

RESUMO

We implemented flipped learning for a gross anatomy dissection course and compared its effects on students' motivation and academic achievement with those of traditional dissection methods. We invited 142 first-year medical students at Chonnam National University Medical School to participate in this study. All participants engaged in traditional dissection methods in the first part of the study and flipped learning in the latter part. Medical students' motivation to learn anatomy by cadaveric dissection was measured using the ARCS (Attention, Relevance, Confidence, and Satisfaction) model. Thereafter, all students completed a written examination consisting of 96 multiple-choice questions. The students' mean motivational score regarding attention was significantly higher in association with flipped learning than with traditional learning. However, the students' mean motivational scores regarding relevance, confidence, and satisfaction were not significantly different between the methods. Additionally, the mean anatomy practice test score was significantly higher in association with flipped learning than with traditional learning. The students' motivational scores and anatomy practice test scores associated with flipped learning positively correlated with the extent of learning material completion. The students' responses indicated that flipped learning helped enhance the learning process, improve time management, reduce confusion during practice, and promote independent practice. The application of flipped learning to a cadaveric dissection course increased individual learning motivation, which improved learning activities both in and out of class, as well as academic achievement.


Assuntos
Anatomia , Estudantes de Medicina , Humanos , Avaliação Educacional , Aprendizagem , Dissecação , Currículo , Cadáver , Aprendizagem Baseada em Problemas/métodos , Anatomia/educação
2.
Mol Ther Nucleic Acids ; 34: 102071, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38046397

RESUMO

Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice. RNA sequencing datasets were obtained from cardiac fibroblasts isolated by use of a Langendorff apparatus and then further processed by use of selection criteria such as differential expression and conservation in species. CircSMAD4 was upregulated by TAC in mice or by transforming growth factor (TGF)-ß1 in primarily cultured human cardiac fibroblasts. Delivery of si-circSMAD4 attenuated myofibroblast activation and cardiac fibrosis in mice treated with isoproterenol (ISP). si-circSmad4 significantly reduced cardiac fibrosis and remodeling at 8 weeks. Mechanistically, circSMAD4 acted as a sponge against the microRNA miR-671-5p in a sequence-specific manner. miR-671-5p was downregulated during myofibroblast activation and its mimic form attenuated cardiac fibrosis. miR-671-5p mimic destabilized fibroblast growth factor receptor 2 (FGFR2) mRNA in a sequence-specific manner and interfered with the fibrotic action of FGFR2. The circSMAD4-miR-671-5p-FGFR2 pathway is involved in the differentiation of cardiac myofibroblasts and thereby the development of cardiac fibrosis.

3.
Clin Anat ; 36(4): 607-611, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36597837

RESUMO

The tensor of the vastus intermedius (TVI) was first described by Grob et al. in 2016. It originates from the anteroinferior greater trochanter and inserts into the upper patella and receives blood and nerves independently of other muscles. It has been overlooked, but since micro-surgery and detailed rehabilitation treatments are being developed, more research on it is warranted. Here we report on the TVI in a Korean cadaveric study. A total of 58 cadavers (41 males and 17 females) were included. Thighs were examined using a standardized dissection protocol. The quadriceps femoris muscle was identified and its components were defined by blunt dissection. A total of 116 lower limbs were dissected. In 40 of them, there was a separately innervated TVI muscle belly between the fasciae of the vastus lateralis (VL) and the vastus intermedius (VI) muscles. TVIs were classed as independent (ID), VI, and VL types according to the relative relationship between the TVI, VL, and VI, and subdivided into two parts: Part 1 was the proximal muscular portion of the TVI attached to the VL or VI, and part 2 was the distal aponeurotic area. TVIs were analyzed in detail via 58 Korean cadavers. We subdivided them on the basis of their location and association with related muscles. A larger study is needed to clarify the function and prevalence of the TVI.


Assuntos
Extremidade Inferior , Músculo Quadríceps , Masculino , Feminino , Humanos , Músculo Quadríceps/fisiologia , Cadáver , Coxa da Perna , Fáscia
4.
Ann Am Thorac Soc ; 19(11): 1907-1912, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35969148

RESUMO

Rationale: The anatomic orientation of the epiglottis is such that it points in the opposite direction to inspiratory flow, thereby potentially making positive airway pressure (PAP) treatment challenging in patients with epiglottic collapse. However, no previous studies have analyzed PAP adherence in these patients. Objectives: This study aimed to analyze adherence to autotitrating PAP (APAP) treatment in patients with epiglottic collapse. Methods: We performed an age- and sex-matched case-control study. On the basis of their overnight level-I polysomnogram, patients were prescribed APAP in a tertiary hospital between July 2018 and March 2019. The site of airway collapse was diagnosed with drug-induced sleep endoscopy. Demographic factors, sleep questionnaire, polysomnography, and APAP usage statistics were analyzed. Results: Eighteen patients with epiglottic collapse (epi-group) and 36 without epiglottic collapse (control group) were analyzed. We found that 22.8% of patients in the epi-group terminated APAP within 2 weeks, whereas only 2.8% of patients in the control group terminated APAP within 2 weeks (P = 0.048). The percentage of days with usage over 4 hours was significantly lower in the epi-group (64.6% vs. 75.6%; P = 0.008). In addition, the adherence failure rate was 66.7% in the epi-group and 33.3% in the control group (P = 0.039). Patients with epiglottic collapse were also found to have lower body mass index, which is an unfavorable predictor of APAP adherence. Conclusions: This study suggests that patients with epiglottic collapse have a higher APAP adherence failure rate than patients without epiglottic collapse. Thus, patients with epiglottic collapse should be followed closely during treatment, and alternative therapies should probably be considered for these patients.


Assuntos
Epiglote , Apneia Obstrutiva do Sono , Humanos , Estudos de Casos e Controles , Pressão Positiva Contínua nas Vias Aéreas , Polissonografia , Apneia Obstrutiva do Sono/terapia
5.
Exp Mol Med ; 53(11): 1781-1791, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34845330

RESUMO

Vascular calcification increases morbidity and mortality in patients with cardiovascular and renal diseases. Previously, we reported that histone deacetylase 1 prevents vascular calcification, whereas its E3 ligase, mouse double minute 2 homolog (MDM2), induces vascular calcification. In the present study, we identified the upstream regulator of MDM2. By utilizing cellular models and transgenic mice, we confirmed that E3 ligase activity is required for vascular calcification. By promoter analysis, we found that both msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) bound to the MDM2 promoter region, which resulted in transcriptional activation of MDM2. The expression levels of both Msx1 and Msx2 were increased in mouse models of vascular calcification and in calcified human coronary arteries. Msx1 and Msx2 potentiated vascular calcification in cellular and mouse models in an MDM2-dependent manner. Our results establish a novel role for MSX1/MSX2 in the transcriptional activation of MDM2 and the resultant increase in MDM2 E3 ligase activity during vascular calcification.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Ubiquitina-Proteína Ligases/genética , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Elementos de Resposta , Ubiquitina-Proteína Ligases/metabolismo , Calcificação Vascular/patologia
6.
Circulation ; 143(19): 1912-1925, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33715387

RESUMO

BACKGROUND: Although the clinical importance of heart failure with preserved ejection fraction has been extensively explored, most therapeutic regimens, including nitric oxide (NO) donors, lack therapeutic benefit. Although the clinical characteristics of heart failure with preserved ejection fraction are somewhat heterogeneous, diastolic dysfunction (DD) is one of the most important features. Here we report that neuronal NO synthase (nNOS) induces DD by S-nitrosylation of HDAC2 (histone deacetylase 2). METHODS: Two animal models of DD-SAUNA (SAlty drinking water/Unilateral Nephrectomy/Aldosterone) and mild transverse aortic constriction mice-as well as human heart samples from patients with left ventricular hypertrophy were used. Genetically modified mice that were either nNOS-ablated or HDAC2 S-nitrosylation-resistant were also challenged. N(ω)-propyl-L-arginine, an nNOS selective inhibitor, and dimethyl fumarate, an NRF2 (nuclear factor erythroid 2-related factor 2) inducer, were used. Molecular events were further checked in human left ventricle specimens. RESULTS: SAUNA or mild transverse aortic constriction stress impaired diastolic function and exercise tolerance without overt systolic failure. Among the posttranslational modifications tested, S-nitrosylation was most dramatically increased in both models. Utilizing heart samples from both mice and humans, we observed increases in nNOS expression and NO production. N(ω)-propyl-L-arginine alleviated the development of DD in vivo. Similarly, nNOS knockout mice were resistant to SAUNA stress. nNOS-induced S-nitrosylation of HDAC2 was relayed by transnitrosylation of GAPDH. HDAC2 S-nitrosylation was confirmed in both DD mouse and human left ventricular hypertrophy. S-nitrosylation of HDAC2 took place at C262 and C274. When DD was induced, HDAC2 S-nitrosylation was detected in wild-type mouse, but not in HDAC2 knock-in mouse heart that expressed HDAC2 C262A/C274A. In addition, HDAC2 C262A/C274A mice maintained normal diastolic function under DD stimuli. Gene delivery with adenovirus-associated virus 9 (AAV9)-NRF2, a putative denitrosylase of HDAC2, or pharmacological intervention by dimethyl fumarate successfully induced HDAC2 denitrosylation and mitigated DD in vivo. CONCLUSIONS: Our observations are the first to demonstrate a new mechanism underlying DD pathophysiology. Our results provide theoretical and experimental evidence to explain the ineffectiveness of conventional NO enhancement trials for improving DD with heart failure symptoms. More important, our results suggest that reduction of NO or denitrosylation of HDAC2 may provide a new therapeutic platform for the treatment of refractory heart failure with preserved ejection fraction.


Assuntos
Sopros Cardíacos/fisiopatologia , Histona Desacetilase 2/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
7.
Mol Ther Nucleic Acids ; 22: 627-639, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230462

RESUMO

Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor of morbidity and mortality associated with these diseases. Herein, we report that reduction of microRNA-27a-3p (miR-27a-3p) causes an increase in activating transcription factor 3 (ATF3), a novel osteogenic transcription factor, in vascular smooth muscle cells. Both microRNA (miRNA) and mRNA microarrays were performed with rat vascular smooth muscle cells, and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatics analysis. Inorganic phosphate significantly reduced the expression of miR-27a-3p in A10 cells. The transcript level was also reduced in vitamin D3-administered mouse aortas. miR-27a-3p mimic reduced calcium deposition, whereas miR-27a-3p inhibitor increased it. The Atf3 mRNA level was upregulated in a cellular vascular calcification model, and miR-27a-3p reduced the Atf3 mRNA and protein levels. Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribute to the development of vascular calcification by de-repression of ATF3.

8.
Exp Mol Med ; 51(9): 1-10, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554784

RESUMO

The adaptor protein CrkII is involved in several biological activities, including mitogenesis, phagocytosis, and cytoskeleton reorganization. Previously, we demonstrated that CrkII plays an important role in osteoclast differentiation and function through Rac1 activation both in vitro and in vivo. In this study, we investigated whether CrkII also regulates the differentiation and function of another type of bone cells, osteoblasts. Overexpression of CrkII in primary osteoblasts inhibited bone morphogenetic protein (BMP) 2-induced osteoblast differentiation and function, whereas knockdown of CrkII expression exerted the opposite effect. Importantly, CrkII strongly enhanced c-Jun-N-terminal kinase (JNK) phosphorylation, and the CrkII overexpression-mediated attenuation of osteoblast differentiation and function was recovered by JNK inhibitor treatment. Furthermore, transgenic mice overexpressing CrkII under control of the alpha-1 type I collagen promoter exhibited a reduced bone mass phenotype. Together, these results indicate that CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Given that CrkII acts as a negative and positive regulator of osteoblast and osteoclast differentiation, respectively, the regulation of CrkII expression in bone cells may help to develop new strategies to enhance bone formation and inhibit bone resorption.


Assuntos
Reabsorção Óssea/genética , Neuropeptídeos/genética , Osteogênese/genética , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Proteína Morfogenética Óssea 2/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Colágeno Tipo I , Cadeia alfa 1 do Colágeno Tipo I , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fosforilação , Transdução de Sinais/genética
10.
Cardiovasc Res ; 115(13): 1850-1860, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596969

RESUMO

AIMS: Previously, we reported that phosphorylation of histone deacetylase 2 (HDAC2) and the resulting activation causes cardiac hypertrophy. Through further study of the specific binding partners of phosphorylated HDAC2 and their mechanism of regulation, we can better understand how cardiac hypertrophy develops. Thus, in the present study, we aimed to elucidate the function of one such binding partner, heat shock protein 70 (HSP70). METHODS AND RESULTS: Primary cultures of rat neonatal ventricular cardiomyocytes and H9c2 cardiomyoblasts were used for in vitro cellular experiments. HSP70 knockout (KO) mice and transgenic (Tg) mice that overexpress HSP70 in the heart were used for in vivo analysis. Peptide-precipitation and immunoprecipitation assay revealed that HSP70 preferentially binds to phosphorylated HDAC2 S394. Forced expression of HSP70 increased phosphorylation of HDAC2 S394 and its activation, but not that of S422/424, whereas knocking down of HSP70 reduced it. However, HSP70 failed to phosphorylate HDAC2 in the cell-free condition. Phosphorylation of HDAC2 S394 by casein kinase 2α1 enhanced the binding of HSP70 to HDAC2, whereas dephosphorylation induced by the catalytic subunit of protein phosphatase 2A (PP2CA) had the opposite effect. HSP70 prevented HDAC2 dephosphorylation by reducing the binding of HDAC2 to PP2CA. HSP70 KO mouse hearts failed to phosphorylate S394 HDAC2 in response to isoproterenol infusion, whereas Tg overexpression of HSP70 increased the phosphorylation and activation of HDAC2. 2-Phenylethynesulfonamide (PES), an HSP70 inhibitor, attenuated cardiac hypertrophy induced either by phenylephrine in neonatal ventricular cardiomyocytes or by aortic banding in mice. PES reduced HDAC2 S394 phosphorylation and its activation by interfering with the binding of HSP70 to HDAC2. CONCLUSION: These results demonstrate that HSP70 specifically binds to S394-phosphorylated HDAC2 and maintains its phosphorylation status, which results in HDAC2 activation and the development of cardiac hypertrophy. Inhibition of HSP70 has possible application as a therapeutic.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Histona Desacetilase 2/metabolismo , Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/deficiência , Proteínas de Choque Térmico HSP70/genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
11.
Exp Mol Med ; 50(7): 1-14, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050113

RESUMO

Cardiac hypertrophy occurs in response to increased hemodynamic demand and can progress to heart failure. Identifying the key regulators of this process is clinically important. Though it is thought that the phosphorylation of histone deacetylase (HDAC) 2 plays a crucial role in the development of pathological cardiac hypertrophy, the detailed mechanism by which this occurs remains unclear. Here, we performed immunoprecipitation and peptide pull-down assays to characterize the functional complex of HDAC2. Protein phosphatase (PP) 2 A was confirmed as a binding partner of HDAC2. PPP2CA, the catalytic subunit of PP2A, bound to HDAC2 and prevented its phosphorylation. Transient overexpression of PPP2CA specifically regulated both the phosphorylation of HDAC2 S394 and hypertrophy-associated HDAC2 activation. HDAC2 S394 phosphorylation was increased in a dose-dependent manner by PP2A inhibitors. Hypertrophic stresses, such as phenylephrine in vitro or pressure overload in vivo, caused PPP2CA to dissociate from HDAC2. Forced expression of PPP2CA negatively regulated the hypertrophic response, but PP2A inhibitors provoked hypertrophy. Adenoviral delivery of a phosphomimic HDAC2 mutant, adenovirus HDAC2 S394E, successfully blocked the anti-hypertrophic effect of adenovirus-PPP2CA, implicating HDAC2 S394 phosphorylation as a critical event for the anti-hypertrophic response. PPP2CA transgenic mice were protected against isoproterenol-induced cardiac hypertrophy and subsequent cardiac fibrosis, whereas simultaneous expression of HDAC2 S394E in the heart did induce hypertrophy. Taken together, our results suggest that PP2A is a critical regulator of HDAC2 activity and pathological cardiac hypertrophy and is a promising target for future therapeutic interventions.


Assuntos
Cardiomegalia/metabolismo , Histona Desacetilase 2/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Histona Desacetilase 2/genética , Camundongos , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
12.
J Immunol ; 200(5): 1661-1670, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378912

RESUMO

Endoplasmic reticulum (ER) stress is triggered by various metabolic factors, such as cholesterol and proinflammatory cytokines. Recent studies have revealed that ER stress is closely related to skeletal disorders, such as osteoporosis. However, the precise mechanism by which ER stress regulates osteoclast differentiation has not been elucidated. In this study, we identified an ER-bound transcription factor, cAMP response element-binding protein H (CREBH), as a downstream effector of ER stress during RANKL-induced osteoclast differentiation. RANKL induced mild ER stress and the simultaneous accumulation of active nuclear CREBH (CREBH-N) in the nucleus during osteoclastogenesis. Overexpression of CREBH-N in osteoclast precursors enhanced RANKL-induced osteoclast formation through NFATc1 upregulation. Inhibiting ER stress using a specific inhibitor attenuated the expression of osteoclast-related genes and CREBH activation. In addition, inhibition of reactive oxygen species using N-acetylcysteine attenuated ER stress, expression of osteoclast-specific marker genes, and RANKL-induced CREBH activation. Furthermore, inhibition of ER stress and CREBH signaling pathways using an ER stress-specific inhibitor or CREBH small interfering RNAs prevented RANKL-induced bone destruction in vivo. Taken together, our results suggest that reactive oxygen species/ER stress signaling-dependent CREBH activation plays an important role in RANKL-induced osteoclastogenesis. Therefore, inactivation of ER stress and CREBH signaling pathways may represent a new treatment strategy for osteoporosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia , Ligante RANK/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia
13.
Sci Rep ; 6: 38526, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917924

RESUMO

Activation of calcineurin-dependent nuclear factor of activated T cells c1 (NFATc1) is convergent for normal bone homeostasis. NFATc1 regulates both osteoclastogenesis and osteoblastogenesis. Here we investigated the roles of regulator of calcineurin (RCAN) genes in bone homeostasis. RCANs function as potent physiological inhibitors of calcineurin. Overexpression of RCANs in osteoclast precursor cells attenuated osteoclast differentiation, while their overexpression in osteoblasts enhanced osteoblast differentiation and function. Intriguingly, opposing effects of RCANs in both cell types were shown by blocking activation of the calcineurin-NFATc1 pathway. Moreover, the disruption of RCAN1 or RCAN2 in mice resulted in reduced bone mass, which is associated with strongly increased osteoclast function and mildly reduced osteoblast function. Taken together, RCANs play critical roles in bone homeostasis by regulating both osteoclastogenesis and osteoblastogenesis, and they serve as inhibitors for calcineurin-NFATc1 signaling both in vivo and in vitro.


Assuntos
Osso e Ossos/metabolismo , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos Knockout , Proteínas Musculares/deficiência , Tamanho do Órgão , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ligante RANK/farmacologia , Transcrição Gênica/efeitos dos fármacos
14.
Sci Rep ; 6: 30977, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485735

RESUMO

Among the diverse cytokines involved in osteoclast differentiation, interleukin (IL)-3 inhibits RANKL-induced osteoclastogenesis. However, the mechanism underlying IL-3-mediated inhibition of osteoclast differentiation is not fully understood. Here we demonstrate that the activation of signal transducers and activators of transcription 5 (STAT5) by IL-3 inhibits RANKL-induced osteoclastogenesis through the induction of the expression of Id genes. We found that STAT5 overexpression inhibited RANKL-induced osteoclastogenesis. However, RANKL did not regulate the expression or activation of STAT5 during osteoclast differentiation. STAT5 deficiency prevented IL-3-mediated inhibition of osteoclastogenesis, suggesting a key role of STAT5 in IL-3-mediated inhibition of osteoclast differentiation. In addition, IL-3-induced STAT5 activation upregulated the expression of Id1 and Id2, which are negative regulators of osteoclastogenesis. Overexpression of ID1 or ID2 in STAT5-deficient cells reversed osteoclast development recovered from IL-3-mediated inhibition. Importantly, microcomputed tomography and histomorphometric analysis revealed that STAT5 conditional knockout mice showed reduced bone mass, with an increased number of osteoclasts. Furthermore, IL-3 inhibited RANKL-induced osteoclast differentiation less effectively in the STAT5 conditional knockout mice than in the wild-type mice after RANKL injection. Taken together, our findings indicate that STAT5 contributes to the remarkable IL-3-mediated inhibition of RANKL-induced osteoclastogenesis by activating Id genes and their associated pathways.


Assuntos
Diferenciação Celular , Interleucina-3/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Animais , Regulação da Expressão Gênica , Humanos , Proteína 1 Inibidora de Diferenciação/biossíntese , Proteína 1 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteína 2 Inibidora de Diferenciação/genética , Interleucina-3/genética , Camundongos , Camundongos Knockout , Osteoclastos/citologia , Ligante RANK/genética , Fator de Transcrição STAT5/genética
15.
Nat Commun ; 7: 10492, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26832969

RESUMO

Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC.


Assuntos
Histona Desacetilase 1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Calcificação Vascular/metabolismo , Animais , Cálcio , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Humanos , Masculino , Camundongos , Músculo Liso Vascular/citologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Ratos , Ubiquitinação
16.
J Immunol ; 196(3): 1123-31, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695370

RESUMO

Rac1, a member of small GTPases, is a key regulator of osteoclast differentiation and function. The Crk family adaptor proteins, consisting of Src homology (SH) 2 and SH3 protein-binding domains, regulate cell proliferation, migration, and invasion through Rac1 activation. In this study, we examined the role of CrkII in osteoclast differentiation and function. Retroviral overexpression of CrkII in osteoclast precursors enhanced osteoclast differentiation and resorptive function through Rac1 activation. The knockdown of CrkII in osteoclast precursors using small interfering RNA inhibited osteoclast differentiation and its resorption activity. Unlike wild-type CrkII, overexpression of the three SH domains in mutant forms of CrkII did not enhance either osteoclast differentiation or function. Phosphorylation of p130 Crk-associated substrate (p130Cas) by osteoclastogenic cytokines in preosteoclasts increased the interaction between p130Cas and CrkII, which is known to be involved in Rac1 activation. Furthermore, transgenic mice overexpressing CrkII under control of a tartrate-resistant acid phosphatase promoter exhibited a low bone mass phenotype, associated with increased resorptive function of osteoclasts in vivo. Taken together, our data suggest that the p130Cas/CrkII/Rac1 signaling pathway plays an important role in osteoclast differentiation and function, both in vitro and in vivo.


Assuntos
Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Proteína Substrato Associada a Crk/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Osteoclastos/citologia , Ligante RANK/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Microtomografia por Raio-X
17.
PLoS One ; 10(11): e0142988, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565616

RESUMO

Peer-assisted learning encourages students to participate more actively in the dissection process and promotes thoughtful dissection. We implemented peer-assisted dissection in 2012 and compared its effects on students' self-assessments of learning and their academic achievement with those of faculty-led dissection. All subjects performed dissections after a lecture about upper-limb gross anatomy. Experimental group (n = 134) dissected a cadaver while guided by peer tutors who had prepared for the dissection in advance, and control group (n = 71) dissected a cadaver after the introduction by a faculty via prosection. Self-assessment scores regarding the learning objectives related to upper limbs were significantly higher in experimental group than in control group. Additionally, experimental group received significantly higher academic scores than did control group. The students in peer-assisted learning perceived themselves as having a better understanding of course content and achieved better academic results compared with those who participated in faculty-led dissection. Peer-assisted dissection contributed to self-perception and to the ability to retain and explain anatomical knowledge.


Assuntos
Anatomia/educação , Dissecação/métodos , Educação de Graduação em Medicina/métodos , Grupo Associado , Adulto , Cadáver , Compreensão , Avaliação Educacional , Feminino , Humanos , Aprendizagem , Masculino , Modelos Estatísticos , Percepção , Estudantes de Medicina , Inquéritos e Questionários , Adulto Jovem
18.
BMC Complement Altern Med ; 15: 353, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467986

RESUMO

BACKGROUND: Rice prolamin has been reported to possess antioxidative, anti-inflammatory and immune-promoting properties. This study is aimed to examine the protective effects of dietary rice prolamin extract (RPE) against dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like skin lesions in mice. METHODS: BALB/c mice were fed diet supplemented with 0-0.1 % RPE for 6 weeks. For the last 2 weeks, 1 % or 0.2 % DNCB was applied repeatedly to the back skin of mice to induce AD-like lesions. Following AD induction, the severity of skin lesions was examined macroscopically and histologically. In addition, the serum levels of IgE, IgG1 and IgG2a were determined by ELISA, and the mRNA expression of IL-4 and IFN-γ in the skin was determined by real-time PCR. RESULTS: Dietary RPE suppressed the clinical symptoms of DNCB-induced dermatitis as well as its associated histopathological changes such as epidermal hyperplasia and infiltration of mast cells and eosinophils in the dermis. RPE treatment also suppressed the DNCB-induced increase in transepidermal water loss. Dietary RPE inhibited the DNCB-induced enhancement of serum IgE and IgG1 levels, whereas it increased the serum IgG2a level in DNCB-treated mice. In addition, dietary RPE upregulated the IFN-γ mRNA expression and downregulated the IL-4 mRNA expression in the skin of DNCB-treated mice. CONCLUSIONS: The above results suggest that dietary RPE exerts a protective effect against DNCB-induced AD in mice via upregulation of Th1 immunity and that RPE may be useful for the treatment of AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Oryza , Fitoterapia , Prolaminas/uso terapêutico , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dermatite Atópica/sangue , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Prolaminas/farmacologia
19.
Cell Signal ; 26(10): 2240-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25025573

RESUMO

Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Atrofia Muscular/patologia , Proteína MyoD/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX7/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Proteína MyoD/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fator de Transcrição PAX7/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Proteólise/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regeneração , Ubiquitina-Proteína Ligases , Ubiquitinação/efeitos dos fármacos
20.
Circ Res ; 115(5): 493-503, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015078

RESUMO

RATIONALE: Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA-binding domain. Through interactions with other transcription factors, SHP regulates diverse biological events, including glucose metabolism in liver. However, the role of SHP in adult heart diseases has not yet been demonstrated. OBJECTIVE: We aimed to investigate the role of SHP in adult heart in association with cardiac hypertrophy. METHODS AND RESULTS: The roles of SHP in cardiac hypertrophy were tested in primary cultured cardiomyocytes and in animal models. SHP-null mice showed a hypertrophic phenotype. Hypertrophic stresses repressed the expression of SHP, whereas forced expression of SHP blocked the development of hypertrophy in cardiomyocytes. SHP reduced the protein amount of Gata6 and, by direct physical interaction with Gata6, interfered with the binding of Gata6 to GATA-binding elements in the promoter regions of natriuretic peptide precursor type A. Metformin, an antidiabetic agent, induced SHP and suppressed cardiac hypertrophy. The metformin-induced antihypertrophic effect was attenuated either by SHP small interfering RNA in cardiomyocytes or in SHP-null mice. CONCLUSIONS: These results establish SHP as a novel antihypertrophic regulator that acts by interfering with GATA6 signaling. SHP may participate in the metformin-induced antihypertrophic response.


Assuntos
Cardiomegalia/prevenção & controle , Fator de Transcrição GATA6/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Sítios de Ligação , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Humanos , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA