Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 31(2): 219-226, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36782271

RESUMO

Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOPinduced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.

2.
Genomics Inform ; 19(4): e39, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35172472

RESUMO

Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)‒positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) 'biological process' terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including 'cell cycle' (cdc2, rik1, pas1, and leo1), 'signaling' (sck2, oga1, and cki3), and 'vesicle-mediated transport' (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the 'signaling' GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.

3.
Biomol Ther (Seoul) ; 29(2): 234-247, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223513

RESUMO

We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

4.
Genomics Inform ; 17(3): e28, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31610624

RESUMO

Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up- and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 µm, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 µm, 48K) could represent ~10,000 up-/down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58°C for both tags. Intriguingly, up-tags required 3 higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25°C) was optimal for cultivation instead of a normal temperature (30°C) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.

5.
Genomics Inform ; 16(2): 22-29, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30304922

RESUMO

Incorporation of unique barcodes into fission yeast gene deletion collections has enabled the identification of gene functions by growth fitness analysis. For fine tuning, it is important to examine barcode sequences, because mutations arise during strain construction. Out of 8,708 barcodes (4,354 strains) covering 88.5% of all 4,919 open reading frames, 7,734 barcodes (88.8%) were validated as high-fidelity to be inserted at the correct positions by Sanger sequencing. Sequence examination of the 7,734 high-fidelity barcodes revealed that 1,039 barcodes (13.4%) deviated from the original design. In total, 1,284 mutations (mutation rate of 16.6%) exist within the 1,039 mutated barcodes, which is comparable to budding yeast (18%). When the type of mutation was considered, substitutions accounted for 845 mutations (10.9%), deletions accounted for 319 mutations (4.1%), and insertions accounted for 121 mutations (1.6%). Peculiarly, the frequency of substitutions (67.6%) was unexpectedly higher than in budding yeast (∼28%) and well above the predicted error of Sanger sequencing (∼2%), which might have arisen during the solid-phase oligonucleotide synthesis and PCR amplification of the barcodes during strain construction. When the mutation rate was analyzed by position within 20-mer barcodes using the 1,284 mutations from the 7,734 sequenced barcodes, there was no significant difference between up-tags and down-tags at a given position. The mutation frequency at a given position was similar at most positions, ranging from 0.4% (32/7,734) to 1.1% (82/7,734), except at position 1, which was highest (3.1%), as in budding yeast. Together, well-defined barcode sequences, combined with the next-generation sequencing platform, promise to make the fission yeast gene deletion library a powerful tool for understanding gene function.

6.
Toxicol Sci ; 161(1): 171-185, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294138

RESUMO

To identify target genes against silver nanoparticles (AgNPs), we screened a genome-wide gene deletion library of 4843 fission yeast heterozygous mutants covering 96% of all protein encoding genes. A total of 33 targets were identified by a microarray and subsequent individual confirmation. The target pattern of AgNPs was more similar to those of AgNO3 and H2O2, followed by Cd and As. The toxic effect of AgNPs on fission yeast was attributed to the intracellular uptake of AgNPs, followed by the subsequent release of Ag+, leading to the generation of reactive oxygen species (ROS). Next, we focused on the top 10 sensitive targets for further studies. As described previously, 7 nonessential targets were associated with detoxification of ROS, because their heterozygous mutants showed elevated ROS levels. Three novel essential targets were related to folate metabolism or cellular component organization, resulting in cell cycle arrest and no induction in the transcriptional level of antioxidant enzymes such as Sod1 and Gpx1 when 1 of the 2 copies was deleted. Intriguingly, met9 played a key role in combating AgNP-induced ROS generation via NADPH production and was also conserved in a human cell line.


Assuntos
Nanopartículas Metálicas/toxicidade , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/efeitos dos fármacos , Prata/toxicidade , Antioxidantes/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Deleção de Genes , Biblioteca Gênica , Estudo de Associação Genômica Ampla , Heterozigoto , Espécies Reativas de Oxigênio/metabolismo , Schizosaccharomyces/genética
7.
J Microbiol ; 54(2): 98-105, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26832665

RESUMO

In all eukaryotic organisms, a wide range of morphologies are responsible for critical cellular function and development. In particular, the Rho GTPases, which are highly conserved from yeast to mammals, are key molecules in signaling pathways that control cell polarity processes and cell wall biosynthesis, which are fundamental aspects of morphogenesis. Therefore, using haploinsufficiency deletion mutants of the fission yeast Schizosaccharomyces pombe, we screened the slow-growing mutants and their morphogenesis, specifically focusing on regulation of their Rho GTPases. Based on this screening, we found that the cwf14 mutant of S. pombe exhibited the slow growth and abnormal phenotypes with an elongated cell shape and thicker cell wall when compared with wild-type cells. In particular, cells with the cwf14 deletion showed excessive Rho1 expression. However, the wildtype strain with ectopically expressed Rho1 did not exhibited any significant change in the level of cwf14, suggesting that cwf14 may act on the upstream of Rho1. Furthermore, the cells with a cwf14 deletion also have increased sensitivity to ß-glucanase, a cell wall-digesting enzyme, which is also seen in Rho1-overexpressing cells. Overall, our results suggest that the cwf14 plays a key role in fission yeast morphogenesis and cell wall biosynthesis and/or degradation possibly via the regulation of Rho1 expression.


Assuntos
Parede Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas rho de Ligação ao GTP/genética
8.
J Microbiol Methods ; 106: 72-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25150109

RESUMO

Genome-wide targeted gene deletion, a systematic method to study gene function by replacing target genes with deletion cassettes, using serial-PCR or block-PCR requires elaborate skill. We developed a novel gene-synthesis method to systematically prepare deletion cassettes on a 96-well basis in fission yeast. We designed the 2129-bp deletion cassette as three modules: a central 1397-bp KanMX4 selection marker module and two flanking 366-bp gene-specific artificial linker modules. The central KanMX4 module can be used in multiple deletion cassettes in combination with different sets of flanking modules. The deletion cassettes consisted of 147 oligonucleotides (93 for the central module+25 for each of the flanking modules+4 for the joints) and the oligonucleotides were designed as ~29mers using an in-house program. Oligonucleotides were synthesized on a 96-well basis and ligated into deletion cassettes without gaps by ligase chain reaction, which was followed by two rounds of nested PCR to amplify trace amounts of the ligated cassettes. After the artificial linkers were removed from the deletion cassettes, the cassettes were transformed into wild-type diploid fission yeast strain SP286. We validated the transformed colonies via check PCR and subjected them to tetrad analysis to confirm functional integrity. Using this method, we systematically deleted 563 genes in the fission yeast Schizosaccharomyces pombe with a >90% success rate and a point-mutation rate of ~0.4 mutations per kb. Our method can be used to create systematic gene deletions in a variety of yeasts especially when it included a bar-code system for parallel analyses.


Assuntos
Deleção de Genes , Marcação de Genes , Genética Microbiana/métodos , Biologia Molecular/métodos , Schizosaccharomyces/genética , Mutagênese Insercional/métodos
9.
Exp Mol Med ; 46: e76, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24525822

RESUMO

Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Acetilação , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Sinergismo Farmacológico , Feminino , Células HeLa , Humanos , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/metabolismo , Vorinostat , Proteína de Morte Celular Associada a bcl/genética
10.
Biochem Biophys Res Commun ; 436(4): 613-8, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23764396

RESUMO

Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at http://pombe.kaist.ac.kr/compendium.


Assuntos
Bases de Dados Genéticas , Genes Fúngicos , Schizosaccharomyces/genética , Evolução Molecular , Haploinsuficiência , Internet , Schizosaccharomyces/efeitos dos fármacos
11.
Cell Cycle ; 9(12): 2399-402, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20519959

RESUMO

The fission yeast Schizosaccharomyces pombe is a model organism used widely to study various aspects of eukaryotic biology. A collection of heterozygous diploid strains containing individual deletions in nearly all S. pombe genes has been created using a PCR based strategy. However, deletion of some genes has not been possible using this methodology. Here we use an efficient knockout strategy based on plasmids that contain large regions homologous to the target gene to delete an additional 29 genes. The collection of deletion mutants now covers 99% of the fission yeast open reading frames.


Assuntos
Deleção de Genes , Técnicas de Inativação de Genes/métodos , Genoma Fúngico , Schizosaccharomyces/genética , Enzimas de Restrição do DNA , Vetores Genéticos , Fases de Leitura Aberta , Plasmídeos , Reação em Cadeia da Polimerase
12.
Nat Biotechnol ; 28(6): 617-623, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473289

RESUMO

We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast--the only other eukaryote for which a comprehensive knockout library exists--revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.


Assuntos
Deleção de Genes , Genoma Fúngico/genética , Schizosaccharomyces/genética , Diploide , Genes Essenciais/genética , Genes Fúngicos/genética , Haploidia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Schizosaccharomyces/crescimento & desenvolvimento , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
13.
Mol Cells ; 26(5): 468-73, 2008 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18711316

RESUMO

Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that Cl- channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of Cl-channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. Cl- channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated Cl- concentration, as judged by flow cytometry analysis using MQAE as a Cl- -detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS (Cl- channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive Cl- channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1.


Assuntos
Canais de Cloreto/metabolismo , LDL-Colesterol/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos de Músculo Liso/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Aorta/citologia , Aorta/enzimologia , Proliferação de Células/efeitos dos fármacos , Canais de Cloreto/antagonistas & inibidores , DNA/biossíntese , Ativação Enzimática/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
J Microbiol Biotechnol ; 18(6): 1059-63, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18600047

RESUMO

Abnormal phenotypes resulting from haploinsufficiency (HI) are due to the loss of one allele. Recent studies in budding yeast have shown that HI originates from insufficient protein levels or from a stoichiometric imbalance between subunits of protein complexes. In humans, however, HI often involves transcription factors. Therefore, the species differences in HI and the molecular mechanisms of species-specific HI remain under investigation. In this study, HI in fission yeast was systematically surveyed. HI in fission yeast affected genes related to signaling and to basic cellular processes, as observed in budding yeast. These results suggest that there are species differences in HI and that the HI that occurs in fission yeast is intermediate to and HI in budding yeast and humans.


Assuntos
Deleção de Genes , Genoma Fúngico , Schizosaccharomyces/genética , Alelos , Proteínas Fúngicas/genética , Dosagem de Genes , Genes Fúngicos , Fenótipo , Schizosaccharomyces/crescimento & desenvolvimento , Especificidade da Espécie
15.
J Microbiol Biotechnol ; 18(2): 263-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18309270

RESUMO

Hydrazinocurcumin (HC), a synthetic derivative of curcumin, has been reported to inhibit angiogenesis via unknown mechanisms. Understanding the molecular mechanisms of the drug's action is important for the development of improved compounds with better pharmacological properties. A genomewide drug-induced haploinsufficiency screening of fission yeast gene deletion mutants has been applied to identify drug targets of HC. As a first step, the 50% inhibition concentration (IC50) of HC was determined to be 2.2 microM. The initial screening of 4,158 mutants in 384-well plates using robotics was performed at concentrations of 2, 3, and 4 microM. A second screening was performed to detect sensitivity to HC on the plates. The first screening revealed 178 candidates, and the second screening resulted in 13 candidates, following the elimination of 165 false positives. Final filtering of the condition-dependent haploinsufficient genes gave eight target genes. Analysis of the specific targets of HC has shown that they are related to septum formation and the general transcription processes, which may be related to histone acetyl transferase. The target mutants showed 65% growth inhibition in response to HC compared with wild-type controls, as shown by liquid culture assay.


Assuntos
Curcumina/análogos & derivados , Deleção de Genes , Genoma Fúngico , Hidrazinas/farmacologia , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/efeitos dos fármacos , Curcumina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Haploidia , Heterozigoto , Concentração Inibidora 50 , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Biochem Biophys Res Commun ; 368(1): 126-31, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18211822

RESUMO

Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKCbeta(II) and PKCtheta from cytosol to plasma membrane, and inhibition of PKCbeta(II) and PKCtheta decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKCbeta(II) and PKCtheta, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, and LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKCbeta(II) and PKCtheta. Inhibition of PKCbeta(II) or PKCtheta, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKCtheta in VSMC proliferation is unique.


Assuntos
LDL-Colesterol/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Isoenzimas/metabolismo , Miócitos de Músculo Liso/enzimologia , Proteína Quinase C/metabolismo , Aorta/efeitos dos fármacos , Aorta/enzimologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Quinase C beta , Proteína Quinase C-theta , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 359(4): 1017-23, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17573040

RESUMO

Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPARalpha activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPARgamma activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H(2)O(2), but of O2(.-), and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G(1)-S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21(Cip1) expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2(.-) is located at the crossroads between LDL signaling and cell proliferation.


Assuntos
Lipoproteínas LDL/administração & dosagem , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , PPAR gama/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos
18.
J Biochem Mol Biol ; 37(6): 741-8, 2004 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-15607035

RESUMO

The hepatitis C virus is associated with the development of liver cirrhosis and hepatocellular carcinomas. Among the 10 polyproteins produced by the virus, no function has been clearly assigned to the non-structural 5A (NS5A) protein. This study was designed to identify the hepatocellular proteins that interact with NS5A of the HCV. Yeast two-hybrid experiments were performed with a human liver cDNA prey-library, using five different NS5A derivatives as baits, the full-length NS5A (NS5A-F, amino acid (aa) 1 approximately 447) and its four different derivatives, denoted as NS5A-A (aa 1 approximately 150), -B (aa 1 approximately 300), -C (aa 300 approximately 447) and D (aa 150 approximately 447). NS5A-F, NS5A-B and NS5A-C gave two, two and 10 candidate clones, respectively, including an AHNAK-related protein, the secreted frizzled-related protein 4 (SFRP4), the N-myc downstream regulated gene 1 (NDRG1), the cellular retinoic acid binding protein 1 (CRABP-1), ferritin heavy chain (FTH1), translokin, tumor-associated calcium signal transducer 2 (TACSTD2), phosphatidylinositol 4-kinase (PI4K) and centaurindelta 2 (CENTdelta2). However, NS5A-A produced no candidates and NS5A-D was not suitable as bait due to transcriptional activity. Based on an in vitro binding assay, CRABP-1, PI4K, CENTdelta2 and two unknown fusion proteins with maltose binding protein (MBP), were confirmed to interact with the glutathione S-transferase (GST)/NS5A fusion protein. Furthermore, the interactions of CRABP-1, PI4K and CENTdelta2 were not related to the PXXP motif (class II), as judged by a domain analysis. While their biological relevance is under investigation, the results contribute to a better understanding of the possible role of NS5A in hepatocellular signaling pathways.


Assuntos
Fígado/química , Fígado/metabolismo , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...