Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Immunol ; 67(3): 105-113, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604771

RESUMO

The bone marrow (BM) stromal cell antigen-2 (BST-2), also known as tetherin, CD317, PDCA-1, or HM1.24, is a membrane protein overexpressed in several types of tumors and may act as a promising target for cancer treatment via antibody-dependent cellular cytotoxicity. BST-2 is also expressed in human BM stromal cells (BMSC), which support B cell development. While the activity of BST-2 as an antiviral factor has been demonstrated, the expression patterns and the role of BST-2 on B-cell development and activation have not been investigated, especially in vivo. In this study, Bst2 knockout (Bst2-/- ) mice were generated to assess the role of BST-2 on B cell development and activation. It was observed that BST-2 was not expressed in BMSC or all B cell progenitors even in wild-type mice and does not play a significant role in B cell development. In addition, the loss of BST-2 had no effect on B cell activation. Furthermore and in contrast to the well-known antiviral role of BST-2, infection of vesicular stomatitis Indiana virus to the BM cells collected from the Bst2-/- mice produced less infectious virus compared with that from the WT mice. These results suggest that murine BST-2 is different from human BST-2 in the expression pattern, physiological function, in vivo, and might possess positive role on VSV replication.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Animais , Humanos , Camundongos , Proteínas de Membrana , Vírus da Estomatite Vesicular Indiana , Antígeno 2 do Estroma da Médula Óssea/metabolismo
2.
bioRxiv ; 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35169796

RESUMO

A well-tolerated and cost-effective oral drug that blocks SARS-CoV-2 growth and dissemination would be a major advance in the global effort to reduce COVID-19 morbidity and mortality. Here, we show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits SARS-CoV-2 viral replication and infection in different primate and human cell models including stem cell-derived human alveolar epithelial type 2 cells. Furthermore, NTZ synergizes with remdesivir, and it broadly inhibits growth of SARS-CoV-2 variants B.1.351 (beta), P.1 (gamma), and B.1617.2 (delta) and viral syncytia formation driven by their spike proteins. Strikingly, oral NTZ treatment of Syrian hamsters significantly inhibits SARS-CoV-2-driven weight loss, inflammation, and viral dissemination and syncytia formation in the lungs. These studies show that NTZ is a novel host-directed therapeutic that broadly inhibits SARS-CoV-2 dissemination and pathogenesis in human and hamster physiological models, which supports further testing and optimization of NTZ-based therapy for SARS-CoV-2 infection alone and in combination with antiviral drugs.

3.
J Immunol ; 205(9): 2479-2488, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978279

RESUMO

The human TNF/LT locus genes TNF, LTA, and LTB are expressed in a cell type-specific manner. In this study, we show that a highly conserved NFAT binding site within the distal noncoding element hHS-8 coordinately controls TNF and LTA gene expression in human T cells. Upon activation of primary human CD4+ T cells, hHS-8 and the TNF and LTA promoters display increased H3K27 acetylation and nuclease sensitivity and coordinate induction of TNF, LTA, and hHS-8 enhancer RNA transcription occurs. Functional analyses using CRISPR/dead(d)Cas9 targeting of the hHS-8-NFAT site in the human T cell line CEM demonstrate significant reduction of TNF and LTA mRNA synthesis and of RNA polymerase II recruitment to their promoters. These studies elucidate how a distal element regulates the inducible cell type-specific gene expression program of the human TNF/LT locus and provide an approach for modulation of TNF and LTA transcription in human disease using CRISPR/dCas9.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Expressão Gênica/genética , Linfotoxina-alfa/genética , Fator de Necrose Tumoral alfa/genética , Acetilação , Sítios de Ligação/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Histonas/genética , Humanos , Leucócitos Mononucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , Células THP-1/metabolismo , Transcrição Gênica/genética
4.
iScience ; 22: 299-313, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31805434

RESUMO

To establish stable infection, Mycobacterium tuberculosis (MTb) must overcome host innate immune mechanisms, including those that sense pathogen-derived nucleic acids. Here, we show that the host cytosolic RNA sensing molecules RIG-I-like receptor (RLR) signaling proteins RIG-I and MDA5, their common adaptor protein MAVS, and the RNA-dependent kinase PKR each independently inhibit MTb growth in human cells. Furthermore, we show that MTb broadly stimulates RIG-I, MDA5, MAVS, and PKR gene expression and their biological activities. We also show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits intracellular MTb growth and amplifies MTb-stimulated RNA sensor gene expression and activity. This study establishes prototypic cytoplasmic RNA sensors as innate restriction factors for MTb growth in human cells and it shows that targeting this pathway is a potential host-directed approach to treat tuberculosis disease.

5.
Sci Rep ; 9(1): 17067, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745167

RESUMO

IL-25, a member of the IL-17 family of cytokines, is known to enhance type 2 immune responses, but suppress type 3 (IL-17A)-mediated immune responses. Mice deficient in IL-1 receptor antagonist (Il1rn-/- mice) have excessive IL-1 signaling, resulting in spontaneous development of IL-1-, TNF- and IL-17A-dependent aortitis. We found that expression of II25 mRNA was increased in the aortae of Il1rn-/- mice, suggesting that IL-25 may suppress development of IL-1-, TNF- and IL-17A-dependent aortitis in Il1rn-/- mice by inhibiting type 3-mediated immune responses. However, we unexpectedly found that Il25-/-Il1rn-/- mice showed attenuated development of aortitis, accompanied by reduced accumulation of inflammatory cells such as dendritic cells, macrophages and neutrophils and reduced mRNA expression of Il17a and Tnfa-but not Il4 or Il13-in local lesions compared with Il1rn-/- mice. Tissue-, but not immune cell-, derived IL-25 was crucial for development of aortitis. IL-25 enhanced IL-1ß and TNF production by IL-25 receptor-expressing dendritic cells and macrophages, respectively, at inflammatory sites of aortae of Il1rn-/- mice, contributing to exacerbation of development of IL-1-, TNF- and IL-17A-dependent aortitis in those mice. Our findings suggest that neutralization of IL-25 may be a potential therapeutic target for aortitis.


Assuntos
Aortite/imunologia , Doenças Autoimunes/imunologia , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucinas/imunologia , Animais , Aortite/genética , Aortite/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Células Dendríticas/imunologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Interleucina-17/genética , Interleucina-1beta/metabolismo , Interleucinas/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/imunologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Nat Immunol ; 20(9): 1186-1195, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384058

RESUMO

Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.


Assuntos
Glucose/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Acetilcoenzima A/biossíntese , Acetilação , Animais , Feminino , Histonas/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
8.
iScience ; 19: 1279-1290, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31402258

RESUMO

Here, we show that the US Food and Drug Administration-approved oral drug nitazoxanide (NTZ) broadly amplifies the host innate immune response to viruses and inhibits Ebola virus (EBOV) replication. We find that NTZ enhances retinoic-acid-inducible protein I (RIG-I)-like-receptor, mitochondrial antiviral signaling protein, interferon regulatory factor 3, and interferon activities and induces transcription of the antiviral phosphatase GADD34. NTZ significantly inhibits EBOV replication in human cells through its effects on RIG-I and protein kinase R (PKR), suggesting that it counteracts EBOV VP35 protein's ability to block RIG-I and PKR sensing of EBOV. NTZ also inhibits a second negative-strand RNA virus, vesicular stomatitis virus (VSV), through RIG-I and GADD34, but not PKR, consistent with VSV's distinct host innate immune evasion mechanisms. Thus, NTZ counteracts varied virus-specific immune evasion strategies by generally enhancing the RNA sensing and interferon axis that is triggered by foreign cytoplasmic RNA exposure, and holds promise as an oral therapy against EBOV.

9.
Sci Rep ; 8(1): 18052, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575775

RESUMO

Certain proteases derived from house dust mites and plants are considered to trigger initiation of allergic airway inflammation by disrupting tight junctions between epithelial cells. It is known that inhalation of proteases such as house dust mite-derived Der p1 and/or papaya-derived papain caused airway eosinophilia in naïve mice and even in Rag-deficient mice that lack acquired immune cells such as T, B and NKT cells. In contrast, little is known regarding the possible involvement of proteases derived from Aspergillus species (fungal-associated proteases; FAP), which are ubiquitous saprophytic fungi in the environment, in the development of allergic airway eosinophilia. Here, we found that inhalation of FAP by naïve mice led to airway eosinophilia that was dependent on protease-activated receptor-2 (PAR2), but not TLR2 and TLR4. Those findings suggest that the protease activity of FAP, but not endotoxins in FAP, are important in the setting. In addition, development of that eosinophilia was mediated by innate immune cells (ILCs) such as innate lymphoid cells, but not by acquired immune cells such as T, B and NKT cells. Whereas IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are involved in induction of FAP-induced ILC-mediated airway eosinophilia, IL-33-rather than IL-25 and/or TSLP-was critical for the eosinophilia in our model. Our findings improve our understanding of the molecular mechanisms involved in induction of airway inflammation by FAP.


Assuntos
Aspergillus/imunologia , Citocinas/fisiologia , Imunidade Inata/fisiologia , Interleucina-33/fisiologia , Interleucinas/fisiologia , Peptídeo Hidrolases/imunologia , Pneumonia/imunologia , Alérgenos/imunologia , Animais , Aspergillus/enzimologia , Aspergillus/metabolismo , Imunidade Celular/fisiologia , Pneumopatias Fúngicas/complicações , Pneumopatias Fúngicas/enzimologia , Pneumopatias Fúngicas/genética , Pneumopatias Fúngicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Hidrolases/metabolismo , Pneumonia/genética , Pneumonia/metabolismo , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/imunologia , Linfopoietina do Estroma do Timo
10.
Sci Rep ; 8(1): 15750, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356086

RESUMO

IL-17C, which is a member of the IL-17 family of cytokines, is preferentially produced by epithelial cells in the lung, skin and colon, suggesting that IL-17C may be involved in not only host defense but also inflammatory diseases in those tissues. In support of that, IL-17C was demonstrated to contribute to development of T cell-dependent imiquimod-induced psoriatic dermatitis and T cell-independent dextran sodium sulfate-induced acute colitis using mice deficient in IL-17C and/or IL-17RE, which is a component of the receptor for IL-17C. However, the roles of IL-17C in other inflammatory diseases remain poorly understood. Therefore, we investigated the contributions of IL-17C to development of certain disease models using Il17c-/- mice, which we newly generated. Those mice showed normal development of T cell-dependent inflammatory diseases such as FITC- and DNFB-induced contact dermatitis/contact hypersensitivity (CHS) and concanavalin A-induced hepatitis, and T cell-independent inflammatory diseases such as bleomycin-induced pulmonary fibrosis, papain-induced airway eosinophilia and LPS-induced airway neutrophilia. On the other hand, those mice were highly resistant to LPS-induced endotoxin shock, indicating that IL-17C is crucial for protection against that immunological reaction. Therefore, IL-17C neutralization may represent a novel therapeutic approach for sepsis, in addition to psoriasis and acute colitis.


Assuntos
Inflamação/etiologia , Interleucina-17/fisiologia , Linfócitos T/fisiologia , Animais , Colite/terapia , Inflamação/imunologia , Interleucina-17/imunologia , Camundongos , Psoríase/terapia , Sepse/terapia
12.
Sci Rep ; 8(1): 6639, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703903

RESUMO

IL-31, which is a member of the IL-6 family of cytokines, is produced mainly by activated CD4+ T cells, in particular activated Th2 cells, suggesting a contribution to development of type-2 immune responses. IL-31 was reported to be increased in specimens from patients with atopic dermatitis, and IL-31-transgenic mice develop atopic dermatitis-like skin inflammation, which is involved in the pathogenesis of atopic dermatitis. However, the role of IL-31 in development of contact dermatitis/contact hypersensitivity (CHS), which is mediated by hapten-specific T cells, including Th2 cells, is not fully understood. Therefore, we investigated this using IL-31-deficient (Il31-/-) mice, which we newly generated. We demonstrated that the mice showed normal migration and maturation of skin dendritic cells and induction of hapten-specific T cells in the sensitization phase of FITC-induced CHS, and normal induction of local inflammation in the elicitation phase of FITC- and DNFB-induced CHS. On the other hand, those mice showed reduced scratching frequency and duration during FITC- and/or DNFB-induced CHS. Our findings suggest that IL-31 is responsible for pruritus, but not induction of local skin inflammation, during CHS induced by FITC and DNFB.


Assuntos
Dermatite de Contato/patologia , Inflamação/patologia , Interleucinas/metabolismo , Prurido/fisiopatologia , Animais , Dinitrofluorbenzeno/administração & dosagem , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/administração & dosagem , Inflamação/induzido quimicamente , Interleucinas/deficiência , Células de Langerhans/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prurido/induzido quimicamente , Células Th2/imunologia
13.
J Allergy Clin Immunol ; 142(5): 1500-1509.e10, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29522843

RESUMO

BACKGROUND: In addition to thymic stromal lymphopoietin and IL-33, IL-25 is known to induce TH2 cytokine production by various cell types, including TH2 cells, TH9 cells, invariant natural killer T cells, and group 2 innate lymphoid cells, involved in TH2-type immune responses. Because both TH2-type and TH17-type cells/cytokines are crucial for contact hypersensitivity (CHS), IL-25 can contribute to this by enhancing TH2-type immune responses. However, the precise role of IL-25 in the pathogenesis of fluorescein isothiocyanate-induced CHS is poorly understood. OBJECTIVE: We investigated the contribution of IL-25 to CHS using Il25-/- mice. METHODS: CHS was evaluated by means of measurement of ear skin thickness in mice after fluorescein isothiocyanate painting. Skin dendritic cell (DC) migration, hapten-specific TH cell differentiation, and detection of IL-1ß-producing cells were determined by using flow cytometry, ELISA, and immunohistochemistry, respectively. RESULTS: In contrast to thymic stromal lymphopoietin, we found that IL-25 was not essential for skin DC migration or hapten-specific TH cell differentiation in the sensitization phase of CHS. Unexpectedly, mast cell- and non-immune cell-derived IL-25 was important for hapten-specific TH17 cell-mediated rather than TH2 cell-mediated inflammation in the elicitation phase of CHS by enhancing TH17-related, but not TH2-related, cytokines in the skin. In particular, IL-1ß produced by dermal DCs in response to IL-25 was crucial for hapten-specific TH17 cell activation, contributing to induction of local inflammation in the elicitation phase of CHS. CONCLUSION: Our results identify a novel IL-25 inflammatory pathway involved in induction of TH17 cell-mediated, but not TH2 cell-mediated, CHS. IL-25 neutralization can be a potential approach for treatment of CHS.


Assuntos
Citocinas/imunologia , Dermatite Alérgica de Contato/imunologia , Células Th17/imunologia , Animais , Citocinas/genética , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fator de Transcrição STAT6/genética , Linfopoietina do Estroma do Timo
14.
FASEB J ; 32(4): 2292-2304, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29242277

RESUMO

Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78-/-) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78-/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78-/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78-/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Obesidade/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Chaperona BiP do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Obesidade/etiologia , Resposta a Proteínas não Dobradas
15.
Biochem Biophys Rep ; 12: 62-65, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955793

RESUMO

Interleukin (IL)-25, which is a member of the IL-17 family of cytokines, induces production of such Th2 cytokines as IL-4, IL-5, IL-9 and/or IL-13 by various types of cells, including Th2 cells, Th9 cells and group 2 innate lymphoid cells (ILC2). On the other hand, IL-25 can suppress Th1- and Th17-associated immune responses by enhancing Th2-type immune responses. Supporting this, IL-25 is known to suppress development of experimental autoimmune encephalitis, which is an IL-17-mediated autoimmune disease in mice. However, the role of IL-25 in development of IL-17-mediated arthritis is not fully understood. Therefore, we investigated this using IL-1 receptor antagonist-deficient (IL-1Ra-/-) mice, which spontaneously develop IL-17-dependent arthritis. However, development of spontaneous arthritis (incidence rate, disease severity, proliferation of synovial cells, infiltration of PMNs, and bone erosion in joints) and differentiation of Th17 cells in draining lymph nodes in IL-25-/- IL-1Ra-/- mice were similar to in control IL-25+/+ IL-1Ra-/- mice. These observations indicate that IL-25 does not exert any inhibitory and/or pathogenic effect on development of IL-17-mediated spontaneous arthritis in IL-1Ra-/- mice.

16.
Allergol Int ; 65(4): 459-465, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27209052

RESUMO

BACKGROUND: T cell immunoglobulin domain and mucin domain-containing molecule 3 (TIM-3), which is preferentially expressed on Th1 cells rather than Th2 cells, is considered to be a negative regulator of Th1 cell function. This suggests that TIM-3 indirectly enhances Th2-type immune responses by suppressing Th1 cell function. METHODS: To investigate TIM-3's possible involvement in Th2-type acute and chronic airway inflammation, wild-type and TIM-3-deficient (TIM-3-/-) mice were sensitized and challenged with a house dust mite (HDM) extract. Airway inflammation and the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) in the mice were determined by histological analysis and with a hemocytometer, respectively. Expression of mRNA in the lungs was determined by quantitative PCR, while the levels of cytokines in the BALFs and IgE in sera were determined by ELISA. RESULTS: Despite constitutive expression of TIM-3 mRNA in the lungs, the number of eosinophils in bronchoalveolar lavage fluids (BALFs) and the score of pulmonary inflammation were comparable between wild-type and TIM-3-/- mice during both acute and chronic HDM-induced airway inflammation. On the other hand, the number of lymphocytes in the BALFs of TIM-3-/- mice was significantly increased compared with wild-type mice during HDM-induced chronic, but not acute, airway inflammation, while the levels of Th2 cytokines in the BALFs and HDM-specific IgG1 and IgG2a and total IgE in the sera were comparable in both groups. CONCLUSIONS: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.


Assuntos
Antígenos de Dermatophagoides/imunologia , Receptor Celular 2 do Vírus da Hepatite A/genética , Inflamação/genética , Inflamação/imunologia , Doenças Respiratórias/genética , Doenças Respiratórias/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas , Modelos Animais de Doenças , Imunoglobulina E/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Doenças Respiratórias/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
17.
Biochem Biophys Rep ; 5: 191-195, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955823

RESUMO

IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25-/-, IL-33-/- and TSLP receptor (TSLPR)-/- mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.

18.
Immunity ; 43(1): 175-86, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200013

RESUMO

House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells.


Assuntos
Inflamação/imunologia , Interleucina-2/imunologia , Interleucinas/imunologia , Mastócitos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Eosinofilia/induzido quimicamente , Humanos , Interleucina-10/imunologia , Interleucina-2/genética , Interleucina-33 , Interleucinas/genética , Interleucinas/farmacologia , Pulmão/citologia , Pulmão/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papaína/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Pyroglyphidae/imunologia , Células Th2/imunologia
19.
Nature ; 517(7535): 466-71, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533956

RESUMO

The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , Cinetocoros/metabolismo , Meiose , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Feminino , Humanos , Infertilidade/genética , Infertilidade/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinase 1 Polo-Like
20.
Biochem Biophys Res Commun ; 453(1): 1-6, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25204502

RESUMO

IL-17RA is a shared receptor subunit for several cytokines of the IL-17 family, including IL-17A, IL-17C, IL-17E (also called IL-25) and IL-17F. It has been shown that mice deficient in IL-17RA are more susceptible to sepsis than wild-type mice, suggesting that IL-17RA is important for host defense against sepsis. However, it is unclear which ligands for IL-17RA, such as IL-17A, IL-17C, IL-17E/IL-25 and/or IL-17F, are involved in the pathogenesis of sepsis. Therefore, we examined IL-17A, IL-17E/IL-25 and IL-17F for possible involvement in LPS-induced endotoxin shock. IL-17A-deficient mice, but not IL-25- or IL-17F-deficient mice, were resistant to LPS-induced endotoxin shock, as compared with wild-type mice. Nevertheless, studies using IL-6-deficient, IL-21Rα-deficient and Rag-2-deficient mice, revealed that neither IL-6 and IL-21, both of which are important for Th17 cell differentiation, nor Th17 cells were essential for the development of LPS-induced endotoxin shock, suggesting that IL-17A-producing cells other than Th17 cells were important in the setting. In this connection, IL-17A was produced by macrophages, DCs and eosinophils after LPS injection. Taken together, these findings indicate that IL-17A, but not IL-17F or IL-25, is crucial for LPS-induced endotoxin shock. In addition, macrophages, DCs and eosinophils, but not Th17 cells or γδ T cells, may be sources of IL-17A during LPS-induced endotoxin shock.


Assuntos
Eosinófilos/imunologia , Interleucina-17/biossíntese , Células Mieloides/imunologia , Choque Séptico/imunologia , Animais , Feminino , Interleucina-17/deficiência , Interleucina-17/genética , Subunidade alfa de Receptor de Interleucina-21/biossíntese , Subunidade alfa de Receptor de Interleucina-21/deficiência , Subunidade alfa de Receptor de Interleucina-21/genética , Interleucina-6/biossíntese , Interleucina-6/deficiência , Interleucina-6/genética , Interleucinas/biossíntese , Interleucinas/deficiência , Interleucinas/genética , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-17/metabolismo , Choque Séptico/etiologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...