Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadl0822, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381827

RESUMO

Ancient adhesives used in multicomponent tools may be among our best material evidences of cultural evolution and cognitive processes in early humans. African Homo sapiens is known to have made compound adhesives from naturally sticky substances and ochre, a technical behavior proposed to mark the advent of elaborate cognitive processes in our species. Foragers of the European Middle Paleolithic also used glues, but evidence of ochre-based compound adhesives is unknown. Here, we present evidence of this kind. Bitumen was mixed with high loads of goethite ochre to make compound adhesives at the type-site of the Mousterian, Le Moustier (France). Ochre loads were so high that they lowered the adhesive's performance in classical hafting situations where stone implements are glued to handles. However, when used as handheld grips on cutting or scraping tools, a behavior known from Neanderthals, high-ochre adhesives present a real benefit, improving their solidity and rigidity. Our findings help understand the implications of Pleistocene adhesive making.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Adesivos , Arqueologia , Cognição
2.
PLoS One ; 17(4): e0265640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452464

RESUMO

The study of lithic raw material quality has become one of the major interpretive tools to investigate the raw material selection behaviour and its influence to the knapping technology. In order to make objective assessments of raw material quality, we need to measure their mechanical properties (e.g., fracture resistance, hardness, modulus of elasticity). However, such comprehensive investigations are lacking for the Palaeolithic of Kazakhstan. In this work, we investigate geological and archaeological lithic raw material samples of chert, porphyry, and shale collected from the Inner Asian Mountain Corridor (henceforth IAMC). Selected samples of aforementioned rocks were tested by means of Vickers and Knoop indentation methods to determine the main aspect of their mechanical properties: their indentation fracture resistance (a value closely related to fracture toughness). These tests were complemented by traditional petrographic studies to characterise the mineralogical composition and evaluate the level of impurities that could have potentially affected the mechanical properties. The results show that materials, such as porphyry possess fracture toughness values that can be compared to those of chert. Previously, porphyry was thought to be of lower quality due to the anisotropic composition and coarse feldspar and quartz phenocrysts embedded in a silica rich matrix. However, our analysis suggests that different raw materials are not different in terms of indentation fracture resistance. This work also offers first insight into the quality of archaeological porphyry that was utilised as a primary raw material at various Upper Palaeolithic sites in the Inner Asian Mountain Corridor from 47-21 ka cal BP.


Assuntos
Arqueologia , Tecnologia , Arqueologia/métodos , Geologia , Dureza , Cazaquistão , Teste de Materiais , Quartzo , Propriedades de Superfície
4.
PLoS One ; 16(1): e0245170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471843

RESUMO

The area of the Inner Asian Mountain Corridor (IAMC) follows the foothills and piedmont zones around the northern limits of Asia's interior mountains, connecting two important areas for human evolution: the Fergana valley and the Siberian Altai. Prior research has suggested the IAMC may have provided an area of connected refugia from harsh climates during the Pleistocene. To date, this region contains very few secure, dateable Pleistocene sites, but its widely available carbonate units present an opportunity for discovering cave sites, which generally preserve longer sequences and organic remains. Here we present two models for predicting karstic cave and rockshelter features in the Kazakh portion of the IAMC. The 2018 model used a combination of lithological data and unsupervised landform classification, while the 2019 model used feature locations from the results of our 2017-2018 field surveys in a supervised classification using a minimum-distance classifier and morphometric features derived from the ASTER digital elevation model (DEM). We present the results of two seasons of survey using two iterations of the karstic cave models (2018 and 2019), and evaluate their performance during survey. In total, we identified 105 cave and rockshelter features from 2017-2019. We conclude that this model-led approach significantly reduces the target area for foot survey.


Assuntos
Arqueologia , Cavernas , Modelos Teóricos , Ásia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...