Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367838

RESUMO

Dalbergia melanoxylon Guill. & Perr (Fabaceae) is widely utilized in the traditional medicine of East Africa, showing effects against a variety of ailments including microbial infections. Phytochemical investigation of the root bark led to the isolation of six previously undescribed prenylated isoflavanones together with eight known secondary metabolites comprising isoflavanoids, neoflavones and an alkyl hydroxylcinnamate. Structures were elucidated based on HR-ESI-MS, 1- and 2-D NMR and ECD spectra. The crude extract and the isolated compounds of D. melanoxylon were tested for their antibacterial, antifungal, anthelmintic and cytotoxic properties, applying established model organisms non-pathogenic to humans. The crude extract exhibited significant antibacterial activity against Gram-positive Bacillus subtilis (97% inhibition at 50 µg/mL) and antifungal activity against the phytopathogens Phytophthora infestans, Botrytis cinerea and Septoria tritici (96, 89 and 73% at 125 µg/mL, respectively). Among the pure compounds tested, kenusanone H and (3R)-tomentosanol B exhibited, in a panel of partially human pathogenic bacteria and fungi, promising antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium showing MIC values between 0.8 and 6.2 µg/mL. The observed biological effects support the traditional use of D. melanoxylon and warrant detailed investigations of its prenylated isoflavanones as antibacterial lead compounds.

2.
BMC Complement Med Ther ; 23(1): 201, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337184

RESUMO

BACKGROUND: Spermacoce princeae (K. Schum) has been used in the treatment of bacterial skin infections in Uganda. Pharmacological studies revealed that extracts of S. princeae exhibited antibacterial, antioxidant, and sun protection potential. This study aimed at isolating and identifying pure compounds from the extracts based on comprehensive analytical characterization by multiple analytical techniques. METHODS: The plant samples were extracted by sequential maceration using n-hexane, ethyl acetate, methanol, and distilled water. The compounds were isolated using a combination of chromatographic techniques and their structures were elucidated by multiple spectroscopic techniques. The antibacterial and antifungal activity determination of the isolated compounds was carried out using an agar well diffusion and potato dextrose assay against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Candida albicans, and Aspergillus flavus while the antioxidant activity was screened with the 2,2-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. The sun protection factor was determined using a Shimadzu Ultra Violet-visible (UV-VIS) double beam spectrophotometer between 290 to 320 nm. RESULTS: Eleven compounds; quercetin (1), kaempferol-3-O-rutinoside (2), rutin (3, 12), myo-inositol (4), asperulosidic acid (5), hexadecanoic acid (6), ß-sitosterol (7), stigmasterol (8), campesterol (9), ursolic acid (10), and ß-sitosterol glucoside (11) were identified in the S. princeae extracts. Compound 2 had good antifungal activity against C. albicans (zone of inhibition, 23.0 ± 0.1 mm). Compound 10 showed antibacterial and antifungal activity against S. aureus, P. aeruginosa, C. albicans, and A. flavus. Compound 2 had a good percentage radical scavenging effect (IC50 = 64.81 µg/ml) and a good sun protection factor (SPF = 26.83). CONCLUSION: This study reports the first-time isolation and identification of compounds 1 to 11 from S. princeae, which contribute to its antimicrobial, antioxidant, and sun protection potential.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/química , Staphylococcus aureus , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
3.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049851

RESUMO

There are high mortality and morbidity rates from poisonous snakebites globally. Many medicinal plants are locally used for snakebite treatment in Uganda. This study aimed to determine the in vitro anti-venom activities of aqueous extract and oils of Toona ciliata against Naja melanoleuca venom. A mixture of venom and extract was administered intramuscularly in rats. Anticoagulant, antiphospholipase A2 (PLA2) inhibition assay, and gel electrophoresis for anti-venom activities of oils were done. The chemical constituents of the oils of ciliata were identified using Gas chromatography-tandem mass spectroscopy (GC-MS/MS). The LD50 of the venom was 0.168 ± 0.21 µg/g. The venom and aqueous extract mixture (1.25 µg/g and 3.5 mg/g) did not cause any rat mortality, while the control with venom only (1.25 µg/g) caused death in 1 h. The aqueous extract of T. ciliata inhibited the anticoagulation activity of N. melanoleuca venom from 18.58 min. to 4.83 min and reduced the hemolytic halo diameter from 24 to 22 mm. SDS-PAGE gel electrophoresis showed that oils completely cleared venom proteins. GC-MS/MS analysis showed that the oils had sesquiterpene hydrocarbons (60%) in the volatile oil (VO) and oxygenated sesquiterpenes (48.89%) in the non-volatile oils (NVO). Some major compounds reported for the first time in T. ciliata NVOs were: Rutamarin (52.55%), ß-Himachalol (9.53%), Girinimbine (6.68%) and Oprea1 (6.24%). Most compounds in the VO were reported for the first time in T. ciliata, including the major ones Santalene (8.55%) and Himachal-7-ol (6.69%). The result showed that aqueous extract and oils of T. ciliata have anti-venom/procoagulant activities and completely neutralized the venom. We recommend a study on isolation and testing the pure compounds against the same venom.


Assuntos
Antivenenos , Óleos Voláteis , Ratos , Animais , Antivenenos/farmacologia , Venenos Elapídicos/análise , Toona , Espectrometria de Massas em Tandem , Óleos Voláteis/farmacologia , Água
4.
Heliyon ; 8(7): e09921, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855996

RESUMO

The influence of the pH of anthocyanins on photovoltaic performance in dye-sensitized solar cells has been investigated. Anthocyanins were extracted from crushed leaf stocks of Manihot esculenta Crantz (Cassava plant) using methanol acidified with 0.5% trifluoracetic acid. The filtrate was concentrated using a rotary evaporator and partitioned against ethyl acetate. The anode was prepared by screen printing TiO2 paste on a previously cleaned fluorine-doped tin oxide (FTO) glass substrate. The cathode was made by applying plastisol on a previously cleaned FTO glass substrate using an artistic brush and later annealed at 450 °C for 20 min to activate platinum. The performance of the solar cells was measured using a solar simulator fitted with an AM1.5 air filter. Electron transport was studied using electrochemical impedance spectroscopy (EIS). It was observed that the short circuit current and efficiency dropped from pH 2 to pH 6 and peaked at pH 8, with values of 0.399 mA and 0.390%, respectively. It then drops further as the basicity increases. The open circuit voltage was observed to increase consistently from pH 2 to pH 12. EIS results showed that the electron density in the conduction band of TiO2 increases from pH 2 to pH 10 and drops from pH 10 to pH 12. It was concluded that, while a large number of electrons ( ∼ 10 16 m - 3 ) are injected into the conduction band of TiO2, the majority do not contribute to the current but instead recombine with other electron acceptor species in the solar cell. However, the injected electrons cause an upwards shift in the quasi-Fermi level of electrons in the conduction band of TiO2. This explains the large variation in the open circuit voltage compared to the short circuit current.

5.
Trop Med Health ; 50(1): 16, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177126

RESUMO

BACKGROUND: Tuberculosis (TB) is one of the leading causes of death globally, and the rise in drug-resistant forms of TB has become a significant threat. Subsequently, it is crucial to explore new, effective and safe anti-TB agents. This study aimed at conducting phytochemical screening, antimycobacterial activity, and acute toxicity of the selected plant species' crude extracts to assess their toxicological potentials and efficacies against TB. METHODS: The aqueous and methanol/dichloromethane (DCM) (1:1) extracts of each selected plant species were subjected to phytochemical screening and antimycobacterial activity using microplate alamar blue assay. For acute toxicity, a single dose (2000 mg/kg) of the aqueous extracts was orally administered to each animal following the Organization for Economic Cooperation and Development (OECD) guidelines No. 425 and then observed for 14 days. The animals were closely observed on the general behavior and clinical signs of toxicity, and body weights were recorded. After the termination of the experiment, hematological, biochemical, and histopathological analyses were performed. RESULTS: The extracts contained alkaloids, flavonoids, tannins, saponins, steroids, terpenoids, resins, cardiac glycosides, phenolic compounds, and coumarins. Aqueous extracts showed moderate to weak activity against the susceptible (H37Rv) M. tuberculosis strain and weak activity against the MDR-TB strain with Minimum Inhibitory Concentrations (MIC µg/mL) ranging from 293.0-2344.0 and 1172.0-4688.0, respectively. Methanol/DCM extracts showed significant to moderate activity against the susceptible TB strain and moderate to weak activity against the MDR-TB strain with MIC (µg/mL) ranging from 98.0-586.0 and 293.0-781.0, respectively. One mortality was recorded from the A. coriaria treated group following the acute toxicity tests, but the LD50 of all the extracts was estimated to be above 2000 mg/kg. Histopathological analyses did not show any significant lesions in the examined organs except those from the A. coriaria treated group. CONCLUSION: Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, saponins, flavonoids, steroids, terpenoids, resins, cardiac glycosides, phenolic compounds, and coumarins. All the methanol/DCM extracts of the plant species studied have promising antimycobacterial activity. The selected plant extracts studied exhibited low acute toxicity levels except for A. coriaria and could be safe for formulations into herbal products.

6.
Nat Prod Res ; 36(11): 2758-2766, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34000936

RESUMO

Extracts from Securidaca longipedunculata showed antiplasmodial activities against reference clones and clinical isolates using SYBR Green I method. A new benzophenone, 2,3,4,5-tetramethoxybenzophenone (1) was isolated and characterized along with seven known compounds: 4-hydroxy-2,3-dimethoxybenzophenone (2); 3-hydroxy-5-methoxybiphenyl (3), methyl-2-hydroxy-6-methoxybenzoate (4), benzyl-2-hydroxy-6-methoxybenzoate (5), 2-hydroxy-6-methoxybenzoic acid (6), 2,4,5-trimethoxybenzophenone (7) and 2-methoxy-3,4-methylenedioxybenzophenone (8). Compounds 1 and 2 showed ex vivo antiplasmodial activities (IC50 28.8 µM and 18.6 µM, respectively); while 5 and 8 showed in vivo activities (IC50 19.7 µM and 14.5 µM, respectively) against D6 strain. In a cytotoxicity assay, all the extracts (with an exception of the MeOH extract of the leaves) and pure compounds were not toxic to the normal LO2 and BEAS cell-lines, while the methanol roots extract (IC50 66.4 µg/mL against A549, and 77.4 µg/mL against HepG2), compounds 6 (IC50 22.2 µM against A549) and 7 (IC50 45.2 µM against HepG2) were weakly active against cancerous cell-lines.


Assuntos
Antimaláricos , Polygalaceae , Securidaca , Antimaláricos/farmacologia , Benzofenonas/farmacologia , Éteres de Hidroxibenzoatos , Extratos Vegetais/farmacologia , Plasmodium falciparum
7.
Trop Med Health ; 49(1): 52, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187581

RESUMO

BACKGROUND: Medicinal plants form an integral part of many health care systems in Uganda. This study aimed at documenting the therapeutic importance of plant species used in primary health care among communities living adjacent to Mabira and Mpanga forest reserves in Central Uganda. METHODS: An ethnobotanical study was conducted between April and June 2018 in 7 villages adjacent to Mpanga and 6 villages adjacent to Mabira central forest reserves. Information was obtained from 28 respondents identified using snowball and purposive sampling techniques and interviewed using semi-structured questionnaires. Descriptive statistics were used to present the data. The quantitative analysis of data was done using fidelity level, informant consensus factor, and percent respondent knowledge indices. RESULTS: A total of 136 medicinal plants were recorded. The plant species classified into 55 families were grouped under 14 medical categories with the highest number of plant species being used for digestive disorders (44%), followed by respiratory (38%) and dermatological disorders (36%). Hoslundia opposita Vahl was mentioned by 71% of the respondents for treating 22 disease conditions. Plant Family Fabaceae was the most represented with 16 species. Informant consensus agreement was high (0.7) for respiratory disorders. The fidelity level was 100% for Bidens pilosa L. and Callistemon citrinus Skeels for treating wounds and cough, respectively. Plant remedies were mainly prepared by decoction (31%) and administered orally (36%). A large number of plants (61%) were harvested from wild habitats. Herbs (50%) and leaves (50%) contributed the highest percentage of plant biological forms and parts used in remedy preparation. CONCLUSION: This study recorded plant species with the potential to treat a wide range of illnesses. This is reflected in the high diversity of the recorded species used for medicinal purposes. Pharmacological studies on the plants with high percentage use values and fidelity levels are needed to validate their uses in the management of the said therapeutic applications. Further research on the isolation and characterization of the plant active compounds could lead to the discovery of new potential drugs.

8.
Trop Med Health ; 49(1): 49, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130746

RESUMO

BACKGROUND: Rural populations in Uganda rely heavily on medicinal plants for the treatment of bacterial skin infections. However, the efficacy of these medicinal plants for their pharmacological action is not known. The study aimed at evaluating the antibacterial, antioxidant, and sun protection potential of Spermacoce princeae, Psorospermum febrifugum, Plectranthus caespitosus, and Erlangea tomentosa extracts. METHODS: The plant samples were extracted by maceration sequentially using hexane, dichloromethane, ethyl acetate, methanol, and distilled water. Antibacterial activity of each extract was carried out using an agar well diffusion assay against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonie, Streptococcus pyogenes, and Salmonella typhi. Acute dermal toxicity of the aqueous extract of S. princeae and P. febrifugum, and E. tomentosa was assessed in young adult healthy Wistar albino rats at a dose of 8000 and 10,000 mg/kg body weight. The antioxidant activity of each extract was carried out using a 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. The sun protection factor was determined using Shimadzu UltraViolet-Visible double beam spectrophotometer between 290 and 320 nm. RESULTS: The plant extracts showed good antibacterial activity against the tested bacterial strains with minimum inhibitory concentration (MIC) ranging between 3.12 and 12.5 mg/ml. There was no significant change in the levels of creatinine, alanine aminotransferase, and aspartate aminotransferase in the rats even at a higher dose of 10,000 mg/kg, which was related to the results of biochemical analysis of the blood samples from the treated and control groups. The aqueous and methanol extracts of S. princeae showed potential antioxidant properties, with half maximal inhibitory concentration (IC50) values of 59.82 and 61.20 µg/ml respectively. The organic and aqueous extracts of P. caespitosus showed high levels of protection against Ultraviolet light with sun protection potential values ranging between 30.67 and 37.84. CONCLUSIONS: The study demonstrated that the selected medicinal plants possessed good antibacterial, antioxidant, and sun protection properties. Therefore, the plants are alternative sources of antibacterial, antioxidant, and sun protection agents in managing bacterial skin infections.

9.
Heliyon ; 7(3): e06571, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33855239

RESUMO

The influence of concentration of anthocyanins in dye sensitized solar cells (DSSC) has been investigated, with focus on how concentration influence electron transport. The influence on electron transport was then linked to solar cell performance. Anthocyanins were extracted from fresh flowers of Acanthus pubscenes using methanol acidified with 0.5% trifluoracetic acid, concentrated using a rotary evaporator and partitioned against ethyl acetate. Concentration of the anthocyanins was determined using Keracyanin Chloride as a standard. DSSC were fabricated using Titanium dioxide as anode, anthocyanins as sensitizers and Platinum as counter electrode material. Titanium dioxide was deposited on Fluorine doped Tin oxide glass substrate using slot coating method. Platinum was deposited on FTO glass substrate using a brush previously dipped in plastisol precursor, and annealed at 450 0C for 20 min to activate Platinum. Dye sensitized solar cells were assembled using anthocyanins at varying concentrations. Performance parameters of the solar cells were measured using a solar simulator which was fitted with digital source meter. Electron transport parameters were studied using electrochemical impedance spectroscopy (EIS). Open circuit voltage, short circuit current and fill factor were observed to increase with concentration of anthocyanins. The increase in solar cell performance was attributed to increase in charge density which led more charges being available for transported to solar cell contacts. The increased charge resulted in a negative shift in Fermi level of electrons in the conduction band of TiO2. The shift in Fermi level resulted into an increase in open circuit voltage and the overall solar cell performance. EIS studies revealed increase in recombination resistance with concentration of anthocyanins. The increase in recombination resistance was found to be related to increase in electron density, and hence the shift in the Fermi level of electrons in the conduction band of TiO2.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33763144

RESUMO

BACKGROUND: Many studies have been undertaken on the medicinal values of Erythrina abyssinica Lam. ex DC. (Fabaceae). The details, however, are highly fragmented in different journals, libraries, and other publication media. This study was therefore conducted to provide a comprehensive report on its ethnobotany, ethnomedicinal uses, phytochemicals, and the available pharmacological evidence supporting its efficacy and safety in traditional medicine. METHOD: We collected data using a PROSPERO registered systematic review protocol on the ethnobotany, phytochemistry, and ethnopharmacology of Erythrina abyssinica from 132 reports that were retrieved from electronic databases. Documented local names, morphology, growth habit and habitat, ethnomedicinal and nonmedicinal uses, diseases treated, parts used, method of preparation and administration, extraction and chemical identity of isolated compounds, and efficacy and toxicity of extracts and isolated compounds were captured. Numerical data were summarized into means, percentages, and frequencies and presented as graphs and tables. RESULTS: Erythrina abyssinica is harvested by traditional herbal medicine practitioners in East, Central, and South African communities to prepare herbal remedies for various human and livestock ailments. These include bacterial and fungal infections, tuberculosis, malaria, HIV/AIDS, diarrhea, cancer, meningitis, inflammatory diseases, urinary tract infections, wounds, diabetes mellitus, and skin and soft tissue injuries. Different extracts and phytochemicals from parts of E. abyssinica have been scientifically proven to possess anti-inflammatory, antibacterial, antioxidant, antiplasmodial, antiproliferative, antifungal, antimycobacterial, antidiarrheal, anti-HIV 1, antidiabetic, and antiobesity activities. This versatile pharmacological activity is due to the abundant flavonoids, alkaloids, and terpenoids present in its different parts. CONCLUSION: Erythrina abyssinica is an important ethnomedicinal plant in Africa harboring useful pharmacologically active phytochemicals against various diseases with significant efficacies and minimal toxicity to mammalian cells. Therefore, this plant should be conserved and its potential to provide novel molecules against diseases be explored further. Clinical trials that evaluate the efficacy and safety of extracts and isolated compounds from E. abyssinica are recommended.

11.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009051

RESUMO

Malaria is the most lethal parasitic disease in the world. The frequent emergence of resistance by malaria parasites to any drug is the hallmark of sustained malaria burden. Since the deployment of artemisinin-based combination therapies (ACTs) it is clear that for a sustained fight against malaria, drug combination is one of the strategies toward malaria elimination. In Sub-Saharan Africa where malaria prevalence is the highest, the identification of plants with a novel mechanism of action that is devoid of cross-resistance is a feasible strategy in drug combination therapy. Thus, artemether and lumefantrine were separately combined and tested with extracts of Securidaca longipedunculata, a plant widely used to treat malaria, at fixed extract-drug ratios of 4:1, 3:1, 1:1, 1:2, 1:3, and 1:4. These combinations were tested for antiplasmodial activity against three strains of Plasmodium falciparum (W2, D6, and DD2), and seven field isolates that were characterized for molecular and ex vivo drug resistance profiles. The mean sum of fifty-percent fractional inhibition concentration (FIC50) of each combination and singly was determined. Synergism was observed across all fixed doses when roots extracts were combined with artemether against D6 strain (FIC50 0.403 ± 0.068) and stems extract combined with lumefantrine against DD2 strain (FIC50 0.376 ± 0.096) as well as field isolates (FIC50 0.656 ± 0.067). Similarly, synergism was observed in all ratios when leaves extract were combined with lumefantrine against W2 strain (FIC50 0.456 ± 0.165). Synergism was observed in most combinations indicating the potential use of S. longipedunculata in combination with artemether and lumefantrine in combating resistance.

12.
Trop Med Health ; 48: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518500

RESUMO

BACKGROUND: There are high mortality and morbidity rates due to poisonous snakebites globally with sub-Saharan Africa having some of the highest cases. However, traditional medicine practitioners (TMP) have been treating snakebites in Uganda for long despite the fact that few studies have been conducted to document such vital and rich indigenous traditional knowledge before it is lost. This study aimed to document the medicinal plant species used by experienced TMP in treating snakebite envenomation in selected post-conflict parts of Uganda. An ethnopharmacological survey was conducted in Kitgum, Serere, Kaberamaido and Kaabong districts in Uganda. Twenty-seven TMP with expertise in treating snakebites were purposively identified using the snowball technique and interviewed using semi-structured questionnaires. Data were analysed using simple descriptive statistics. RESULTS: Sixty plant species from 28 families were documented with high consensus among the isolated indigenous Ik tribe of Kaabong district. Most of the plant species used were from the Asteraceae and Fabaceae families with eight species each. The genus Echinops was the most well-represented with three species. The most commonly used plant species were of citation were Steganotaenia araliaceae (16), Microglossa pyrifolia (Lam.), Gladiolus dalenii Van Geel (13), Aframomum mildbraedii Loes. (11), Jasminum schimperi Vatke and Cyathula uncinulata (Schrad) Schinz (10) and Crinum macowanii Baker and Cyphostemma cyphopetalum (Fresen.) Desc. ex Wild & R.B. Drumm (10). S. araliaceae which was mentioned by all the TMP in the Ik community was used for first aid. Most of the plant species were harvested from the wild (68.75%) and were herbs (65.0%) followed by trees (23.3%). The most commonly used plant parts were roots (42.6%) and leaves (25.0%). Thirteen different methods of preparation and administration were used. Most of the medicines were administered orally (61.2%) and topically (37.6%). The commonest methods of oral application were cold water infusions (32.5%) and decoctions (21.7%). CONCLUSIONS: TMP widely use several medicinal plant species for treating snakebite envenomation in the selected post-conflict regions of Uganda.

13.
J Ethnopharmacol ; 162: 317-22, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25535086

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Neoboutonia macrocalyx has been reported in traditional medicine to be used in the treatment of malaria. AIM OF THE STUDY: To study the in vitro antiplasmodial activity of compounds from the stem bark of Neoboutonia macrocalyx. MATERIALS AND METHODS: Compounds were extracted and purified from stem bark of Neoboutonia macrocalyx and their structure identified and confirmed by spectroscopic methods. The crude ethyl acetate extract, aqueous extract and the isolated compounds were evaluated for antiplasmodial activity against the chloroquine sensitive Sierra Leone I (D6) and chloroquine-resistant Indochina I (W2) strains of Plasmodium falciparum. RESULTS: Chemical investigation of the ethyl acetate extract of Neoboutonia macrocalyx bark resulted in the identification of one new diterpenoid; neoboutomacroin (1) in addition to the four known compounds which included, a phenanthrene; 3,6-dihyroxy-1,7-dimethyl-9-methoxyphenanthrene (2), a sterol; 3-O-Acetyloleuritolic acid (3) and two diterpenoids; simplexin (4) and montanin (5). Compounds 1 and 5 displayed good antiplasmodial activity of IC50 values less than 10 µg/mL against both strains. However, all the compounds tested displayed high cytotoxic activity against MRC5 cell line with IC50 less than 10 µM. CONCLUSIONS: Despite an indirect in vitro antiplasmodial activity of some compounds isolated from the stem bark of Neoboutonia macrocalyx, the identification of these bioactive compounds indicates that they may play a role in the pharmacological properties of this plant.


Assuntos
Antimaláricos/farmacologia , Euphorbiaceae/química , Casca de Planta/química , Caules de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química
14.
Phytochemistry ; 102: 189-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24680168

RESUMO

Neoboutonia macrocalyx is used by people in south western Uganda around Kibale National Park in the treatment of malaria. Phytochemical investigation on the leaves of this plant led to the isolation of nine cycloartane triterpenes (1-9) and one phenanthrene; 7-methoxy-2,8 dimethyl-9,10-dihydrophenantherene-3,6 diol (10) along with three known compounds which included 22-de-O-acetyl-26-deoxyneoboutomellerone (11), mellerin B (12) and 6-hydroxystigmast-4-en-3-one (13). The chemical structures of the compounds were established mainly through a combination of spectroscopic techniques. The isolated compounds were evaluated for antiplasmodial activity against the chloroquine-resistant FcB1/Colombia strain of Plasmodium falciparum and for cytotoxicity against the KB (nasopharyngeal epidermoid carcinoma) and MRC-5 (human diploid embryonic lung) cells. Seven out of 13 compounds exhibited good antiplasmodial activity with IC50 of ⩽5µg/ml with two compounds exhibiting low cytotoxicity and five compounds having significant cytotoxicity.


Assuntos
Antimaláricos/farmacologia , Euphorbiaceae/química , Folhas de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células KB , Testes de Sensibilidade Microbiana , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/isolamento & purificação
15.
J Ethnopharmacol ; 136(1): 236-45, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21550390

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The study was done to establish medicinal plants used in the treatment of various diseases by the people in the Northern sector of Kibale National Park in western Uganda. It was also aimed at establishing the plant parts used and the mode of preparation of remedies. These plants create a basis for phytochemical evaluation which can lead to the discovery of biologically active compounds that can be used as starting materials in the development of new drugs targeting selected diseases such as malaria. MATERIALS AND METHODS: The required information was obtained using open interviews, semi-structured questionnaires, focus group discussions and transect walks. RESULTS: Different medicinal plants (131 species) distributed over 55 families were observed to be used by the local communities around the Northern sector of Kibale National Park. The plants as reported in this paper are used to treat 43 physical illnesses/diseases. The most used parts of the plants are the leaves. Water is the main medium used for the preparation of the remedies which are mostly administered orally. CONCLUSION: The people in the study area have a rich heritage of traditional plants that are used in the health care system to treat diseases. These medicinal plants have contributed significantly to several disease therapies. The most common diseases treated are malaria and cough, which are mostly treated by Vernonia amygdalina Del. and Albizia coriaria Welw. respectively. The main sources of medicinal plants include bush land, home gardens, grasslands, and the forest.


Assuntos
Medicinas Tradicionais Africanas , Fitoterapia , Extratos Vegetais/uso terapêutico , Plantas Medicinais , Humanos , Entrevistas como Assunto , Folhas de Planta , Uganda
16.
J Ethnopharmacol ; 133(2): 850-5, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21075191

RESUMO

AIM OF THE STUDY: In Uganda, malaria is the most common disease and Ugandan people largely rely on traditional medicine. In this context, we carried out an ethnobotanical study on the Kiohima village, located close to the Kibale National Park in South-Western Uganda and investigated in vitro the antiplasmodial and cytotoxic activities of selected medicinal plants. MATERIALS AND METHODS: Seventy-five plants-using adults (men and women) were interviewed to find out their plant use. From these information, 48 plants used in traditional medicine were identified and according to their reported uses and to bibliographic data, several parts of 28 plants (leaves, barks, roots), were selected and collected for biological evaluations. These samples were dried, extracted with ethyl acetate and the crude extracts were assayed for in vitro antiplasmodial and cytotoxic activities at 10 µg/mL. RESULTS: One third of the screened plants showed a significant antiplasmodial activity with inhibition greater than 50% at 10 µg/mL. CONCLUSION: These results may indicate a possible explanation of the use of some medicinal plant against malaria in the village of Kiohima and have also allowed to highlight a plant with potent antimalarial activity: Citropsis articulata root barks.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Plantas Medicinais , Adulto , Antimaláricos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Etnofarmacologia , Feminino , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Medicinas Tradicionais Africanas , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA