Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(5): 2807-2815, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828037

RESUMO

The direct, solid state, and reversible conversion between heat and electricity using thermoelectric devices finds numerous potential uses, especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag2Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (zT) of up to 0.76 at 380 K. To improve these values, bismuth sulfide (Bi2S3) particles also prepared in an aqueous solution are incorporated into the Ag2Se matrix. In this way, a series of Ag2Se/Bi2S3 composites with Bi2S3 wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of Bi2S3 significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % Bi2S3 at 370 K. Furthermore, a high average zT value (zTave) of 0.93 in the 300-390 K range is demonstrated.

2.
Adv Mater ; : e2400810, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569213

RESUMO

The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS2/NiSe2 heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS2/NiSe2@NC) are synthesized and used as a catalytic additive in sulfur cathodes. The NiS2/NiSe2 heterostructure promotes the spin splitting of the 3d orbital, driving the Ni3+ transformation from low to high spin. This high spin configuration raises the electronic energy level and activates the electronic state. This accelerates the charge transfer and optimizes the adsorption energy, lowering the reaction energy barrier of the polysulfides conversion. Benefiting from these characteristics, LSBs based on NiS2/NiSe2@NC/S cathodes exhibit high initial capacity (1458 mAh·g⁻1 at 0.1C), excellent rate capability (572 mAh·g⁻1 at 5C), and stable cycling with an average capacity decay rate of only 0.025% per cycle at 1C during 500 cycles. Even at high sulfur loadings (6.2 mg·cm⁻2), high initial capacities of 1173 mAh·g⁻1 (7.27 mAh·cm⁻2) are measured at 0.1C, and 1058 mAh·g⁻1 is retained after 300 cycles.

3.
Chem Mater ; 35(12): 4810-4820, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396682

RESUMO

The growth mechanism and synthetic controls for colloidal multinary metal chalcogenide nanocrystals (NCs) involving alkali metals and the pnictogen metals Sb and Bi are unknown. Sb and Bi are prone to form metallic nanocrystals that stay as impurities in the final product. Herein, we synthesize colloidal NaBi1-xSbxSe2-ySy NCs using amine-thiol-Se chemistry. We find that ternary NaBiSe2 NCs initiate with Bi0 nuclei and an amorphous intermediate nanoparticle formation that gradually transforms into NaBiSe2 upon Se addition. Furthermore, we extend our methods to substitute Sb in place of Bi and S in place of Se. Our findings show the initial quasi-cubic morphology transforms into a spherical shape upon increased Sb substitution, and the S incorporation promotes elongation along the <111> direction. We further investigate the thermoelectric transport properties of the Sb-substituted material displaying very low thermal conductivity and n-type transport behavior. Notably, the NaBi0.75Sb0.25Se2 material exhibits an ultralow thermal conductivity of 0.25 W·m-1·K-1 at 596 K with an average thermal conductivity of 0.35 W·m-1·K-1 between 358 and 596 K and a ZTmax of 0.24.

4.
J Colloid Interface Sci ; 647: 134-141, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247477

RESUMO

In spite of the fact that lithium metal batteries (LMBs) facilitate the diversification of energy storage technologies, their electrochemical reversibility and stability have long been constrained by side reactions and lithium dendrite problems. While single-ion conducting polymer electrolytes (SICPEs) possess unique advantages of suppressing Li dendrite growth, they deal with difficulties in practical applications due to their slow ion transport in general application scenarios at âˆ¼25 °C. In this study, we develop novel bifunctional lithium salts with negative sulfonylimide (-SO2N(-)SO2-) anions mounted between two styrene reactive groups, which is capable of constructing 3D cross-linked networks with multiscale reticulated ion nanochannels, resulting in the uniform and rapid distribution of Li+ ions in the crosslinked electrolyte. To verify the feasibility of our strategy, we designed PVDF-HFP-based SICPEs and the obtained electrolyte exhibits high thermal stability, outstanding Li+ transference number (0.95), pleasing ionic conductivity (0.722 mS cm-1), and broad chemical window (greater than5.85 V) at ambient temperature. As a result of the electrolyte structural merits, the Li||LFP cells displayed excellent cycling stability (96.4% reversible capacities after 300 cycles at 0.2C) without additional auxiliary heating. This ingenious strategy is expected to providing a new perspective for advanced performance and high safety LMBs.

5.
ACS Appl Mater Interfaces ; 15(19): 23380-23389, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141543

RESUMO

There is a need for the development of lead-free thermoelectric materials for medium-/high-temperature applications. Here, we report a thiol-free tin telluride (SnTe) precursor that can be thermally decomposed to produce SnTe crystals with sizes ranging from tens to several hundreds of nanometers. We further engineer SnTe-Cu2SnTe3 nanocomposites with a homogeneous phase distribution by decomposing the liquid SnTe precursor containing a dispersion of Cu1.5Te colloidal nanoparticles. The presence of Cu within the SnTe and the segregated semimetallic Cu2SnTe3 phase effectively improves the electrical conductivity of SnTe while simultaneously reducing the lattice thermal conductivity without compromising the Seebeck coefficient. Overall, power factors up to 3.63 mW m-1 K-2 and thermoelectric figures of merit up to 1.04 are obtained at 823 K, which represent a 167% enhancement compared with pristine SnTe.

6.
ACS Nano ; 17(9): 8442-8452, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071412

RESUMO

Cu2-xS and Cu2-xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2-xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5-xTe-Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5-xTe-Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5-xTe nanoparticles effectively inhibits Cu1.5-xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...