Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 45(10): 2012-2021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36576062

RESUMO

Increasing attention has been focused on the comprehensive utilisation of alkaline red mud (RM) derived from the aluminium industry. Phytoremediation serves as an effective strategy, but it is limited by the drawbacks of red mud. This study proposed 'co-hydrothermally treating red mud and sewage sludge (SS)' for producing a soil-like matrix, and explored the impacts of SS addition on the characteristics of hydrothermal solid and liquid products of RM. The results showed that the introduction of SS could improve the characteristics of hydrothermal products, including pH, the particle aggregation, and organic components. During hydrothermal treatment, the acid components released from SS could neutralise the alkalinity of RM, reducing the pH of hydrothermal product from 10.1 (without SS) to and 8.2 (80% SS), respectively. With the increase of addition ratio of SS, the main range of particle size distribution in hydrothermal solid products changed from 0.1∼1 µm to 10∼100 µm, suggesting the positive role of SS in improving the particle aggregation. XRD analysis showed that the addition of SS hindered the mineral crystallization of RM during hydrothermal treatment, while FTIR and XPS analysis confirmed that SS could serve as a 'supply source' of organic components, which created favourable conditions for hydrothermal solid products as soil-like matrix. The addition ratio of SS presented the negative correlation with the pH value and positive relative with chemical oxygen demand of hydrothermal liquid products. The hydrothermal liquid product modified by SS was beneficial to further improve soil-like matrix. The strategy of co-hydrothermal treating RM and SS to produce the soil-like matrix could massively consume solid wastes, which is a prospective approach to deal with the trouble of the aluminium industry and sewage treatment plants.


Assuntos
Esgotos , Solo , Esgotos/química , Solo/química , Alumínio , Biodegradação Ambiental
2.
J Agric Food Chem ; 72(1): 166-175, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109361

RESUMO

Two phosphorus (P)-rich biowastes, sewage sludge (SS) and bone dreg (BD), were selected to clarify P footprints among biowaste, biochar, soil, and plants by introducing a novel "3R" concept model. Results showed that pyrolysis resulted in P transformation from an unstable-organic amorphous phase to a stable-inorganic crystalline phase with a P retention rate of 70-90% in biochar (P reservation). In soil, SSBC released more P in acid red soil and alkaline yellow soil than BDBC, while the opposite result appeared in neutral paddy soil. The P released from SSBC formed AlPO4 by combining with Al in soil, whereas P from BDBC transformed into Ca5(PO4)3F(or Cl) in conjunction with Ca in the soil (P replenishment). Various plants exhibited an uptake of approximately 2-6 times more P from biochar-amended soil than from the original soil (P reception). This study can guide the application of biochar in various soil-plant systems for effective nutrient reclamation.


Assuntos
Poluentes do Solo , Solo , Solo/química , Fósforo/química , Carvão Vegetal/química , Esgotos/química , Poluentes do Solo/análise
3.
Materials (Basel) ; 16(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005122

RESUMO

Coal gangue is a solid waste with low carbon content discharged during the course of the coal mining process. The resource utilization of coal gangue could solve environmental problems caused by its excessive production, such as soil contamination and land occupation. This study proposed to produce high-strength thermal insulation bricks using coal gangue as the primary material and three other mineral powders as auxiliary materials, including K-feldspar, CaCO3 and fly ash. A systematic analysis was conducted to explore the optimum raw material addition ratio and optimum sintering temperature; then, the intrinsic structure of thermal insulation bricks and their sintering formation mechanisms were revealed. The results showed that the optimal ratios of coal gangue, K-feldspar, CaCO3 and fly ash were 65 wt%, 15 wt%, 10 wt% and 10 wt%, respectively; the compressive strength of the thermal insulation brick produced under this ratio was 22.5 MPa; thermal conductivity was 0.39 W m-1 k-1. During sintering processes, mineral powders sufficiently fused to form a skeleton, and the CO2 derived from CaCO3 formed pores. The optimum sintering temperature was 1150 °C, because at this temperature, K-feldspar had the best effect in promoting the conversion of CaCO3 to Ca-feldspar. The high level of the relative crystallinity of Ca-feldspar (about 76.0%) helped raise the Si-O network's polymerization degree (NBO/T = 1.24), finally raising the compressive strength of thermal insulation bricks. The innovative method of using coal gangue to make thermal insulation bricks not only solved the environmental pollution caused by coal gangue but also provided excellent construction materials with high practical application value.

4.
Waste Manag ; 162: 83-91, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948116

RESUMO

Transformation of phosphorus (P) species during pyrolytic production of biochar from P-rich biowastes with a subsequent soil amendment is important to P reclamation. Aiming at increasing the content of plant-available P and restraining the formation of easily mobile P in pyrolysis product, this study used exogenous calcium ions (20 wt% CaCl2) addition prior to pyrolysis to regulate the pyrolytic transformation of P chemical fractions from sewage sludge and bone dreg. Results showed that active Ca catalyzed the decomposition of organic P to transform into inorganic orthophosphate. Based on Hedley's sequential extraction method, this study found that addition of Ca ions remarkably reduced the content of soluble P, exchange P, Fe/Al bound P, and occluded P in biochar, while increased Ca bound P from 78 to 85% to 85-96%. Liquid 31P NMR indicated that exogenous Ca induced the crack of the P-O-P bond in pyrophosphate to become orthophosphates. It also explained why new orthophosphates including chlorapatite (Ca5(PO4)3Cl) and calcium hydroxyapatite (Ca10(PO4)6(OH)2) appeared in the Ca-composite biochar compared to pristine biochar. Combined with rapid P-release test in paddy soil (pH 6.27) and 30-days rice seedling growth test under flooded condition (10 wt% biochar addition ratio), it was confirmed that compared to pristine biochar, Ca-composite biochar released more P in paddy soil, but also promoted more P to be taken in by rice root and stalk. These results suggested that pretreating biowaste with Ca ion was a friendly approach to enhance P reclamation during biochar formation, making it a promising P fertilizer.


Assuntos
Oryza , Poluentes do Solo , Fósforo , Cálcio , Fertilizantes , Solo/química , Poluentes do Solo/análise , Fosfatos , Carvão Vegetal/química , Esgotos
5.
Sci Total Environ ; 792: 148550, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465039

RESUMO

Biochar and engineered biochar have been used for phosphorous recovery from wastewater, but the resulted phosphorous-laden (P-laden) biochar needs further disposal. In this study, the feasibility of reusing P-laden biochar for Pb immobilization as well as the underlying mechanism was explored. Three types of engineered biochar, i.e., Ca modified biochar, Mg modified biochar, and Fe modified biochar, were selected to sorb P and then the exhausted biochar was further used for Pb sorption. Results showed that Mg and Ca modified biochar exhibited considerable Pb sorption capacity after P sorption with the maximum value of 3.36-4.03 mmol/g and 5.49-6.58 mmol/g, respectively, while P-laden Fe modified biochar failed to sorb Pb due to its acidic pH. The removal of Pb by P-laden Mg modified biochar involved more precipitation including PbHPO4, Pb5(PO4)3(OH), and Pb3(CO3)2(OH)2 because of its higher P sorption capacity and more -OH group on the surface. Cation exchange with CaCO3 to form PbCO3 was the main mechanism for Pb removal by P-laden Ca modified biochar despite the formation of Pb5(PO4)3(OH) precipitate. Our results demonstrate that waste P-laden biochar can be further used for the effective removal of Pb, which provides a potential approach for waste adsorbent disposal.


Assuntos
Chumbo , Fósforo , Adsorção , Carvão Vegetal , Cinética
6.
Environ Pollut ; 287: 117566, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153610

RESUMO

Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1-79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2-C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC-O). The catalyzation mainly occurred at 200-400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating "C retention" during pyrolysis and "C stability" in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.


Assuntos
Sequestro de Carbono , Pirólise , Cálcio , Carbono , Carvão Vegetal , Solo , Temperatura
7.
Am J Chin Med ; 49(2): 487-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622211

RESUMO

Mistletoe extracts (Viscum album L.) have been widely used as complementary and alternative medicines for the treatment of cancer, and their cytotoxic effects have been reported on various types of cancer. However, the molecular targets of mistletoe extracts have not been well studied. Herein, we investigated molecules associated with the in vitro and in vivo anticancer effects of mistletoe extract using 4T1 murine breast cancer cells. Mistletoe extract induced apoptosis and inhibited the signal transducer and activator of transcription3 (STAT3) phosphorylation. This inhibition was accompanied by the downregulations of forkhead box M1 (FOXM1) and the DNA repair proteins, RAD51 and survivin. Mistletoe extract simultaneously increased the expression of the DNA damage marker proteins, phosphorylated H2A histone family member X (H2A.X), and phosphorylated p38. Furthermore, mistletoe extract effectively suppressed tumor growth in 4T1 tumor-bearing BALB/c mice. In addition to tumor growth inhibition, mistletoe extract inhibited lung metastasis in the tumor-bearing mice and cell invasiveness by downregulating the expressions of matrix metalloproteinases (MMPs), urokinase-type plasminogen activator (uPA), uPA receptor, and markers of epithelial-mesenchymal transition (snail and fibronectin). Taken together, our results suggest that mistletoe extract targets the STAT3-FOXM1 pathway for its cytotoxic effects, and that mistletoe extracts might be useful for the treatment of patients with cancers highly expressing the STAT3-FOXM1 pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proteína Forkhead Box M1/metabolismo , Erva-de-Passarinho , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos BALB C
8.
Chemosphere ; 266: 128991, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33250221

RESUMO

Phosphorus (P) is a valuable resource, while it is vastly lost with wastewater causing eutrophication. In this study, to recover P, composite biochars were prepared by pyrolyzing biowaste impregnated with FeCl3 or MgCl2. It was found that inherent mineral profiles in the biowastes played important roles in interacting with metal chlorides and determined P sorption and precipitation. Specifically, two biowastes containing distinct mineral contents, sawdust and sediment, were selected as model components, being alone or mixed at 1:1 (w/w) to prepare biochars with low, moderate and high mineral contents. Results showed that biochar itself could not absorb P, while loading FeCl3 or MgCl2 achieved P recovery rates of approximate 60-100% and 50-100%, respectively, via electrostatic attraction or ligand exchange of PO43- with -OH/-COOH, which was attributed to the enhanced positive charges and -OH/-COOH on the materials by these metal chlorides. Inherent minerals inhibited FeCl3 transforming into Fe3O4 in pyrolysis and promoted generation of Fe4(PO4)3(OH)3 in P sorption, thus high-mineral content was more appropriate for FeCl3 loading; however, precursors with low-mineral content was suitable for MgCl2 loading, since the bulk-C in biochar acted as porous structure to support MgO crystals with high superficial area (∼255.85 m2 g-1). Besides, FeCl3 and MgCl2 both drove dissolution of inherent minerals significantly, while inherent minerals inhibited release of soluble Fe and Mg2+ into solution, which minimized secondary pollution. This study implied that in constructing composite biochar for catching P, the type of metal chloride should match the inherent minerals in biowastes to maximize P recovery and minimize secondary pollution.


Assuntos
Cloretos , Fósforo , Adsorção , Carvão Vegetal , Minerais
9.
Water Res ; 172: 115494, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954934

RESUMO

Microbial degradation is an elimination method for removal of organic contaminants from soil and water. However, the main factor limiting its practical application is high bacterial sensitivity to environmental factors such as pH, toxicity, and mass transfer. In this study, biochar was produced pyrolytically from peanut shells at 350 °C, 550 °C, and 750 °C (referred to as BC350, BC550, and BC750, respectively) and their promotion on phenol biodegradation in wastewater by the bacterium Pseudomonas citronellolis was investigated. Higher initial phenol concentration (>400 mg L-1) showed obvious inhibition on biodegradation with the removal efficiencies being less than 46%, and even the bacterium failed to survive at the phenol concentrations of higher than 1000 mg L-1. With biochar incorporated, the removal efficiencies of phenol increased from below 46% to up to 99% at the initial concentrations of 400-1200 mg L-1. Immobilization of strains in biochar by calcium alginate further increased the microbial tolerance to high concentrations of phenol (i.e., 63% removal at 1200 mg L-1). Scanning electron microscopy demonstrated that biochar acted as shelter to support the bacterium to struggle with extreme conditions. The initial adsorption of phenol by biochar alleviated the initial toxicity of phenol to bacterium and the subsequent gradual desorption controlled the bioavailability of phenol. In this regard, BC350 showed a comparable sorption capacity with BC550 and BC750, while a higher desorption potential than them, thus balanced better the toxicity and bioavailability of phenol to microbes. Alkalinity of BC550 and BC750 played important roles in rescuing the microbes from being damaged by pH shock via neutralizing the fast generation of acidic intermediates. The extractable organic substances in BC350 could be consumed by bacterium as substrates, which was confirmed by incubating the strains in water-extractable solution. Results of this study indicate that incorporation of microbes with biochar could promote the biodegradation of high concentration organic wastewater.


Assuntos
Fenol , Águas Residuárias , Adsorção , Biodegradação Ambiental , Carvão Vegetal , Concentração de Íons de Hidrogênio , Fenóis , Pseudomonas
10.
J Hazard Mater ; 382: 121033, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561196

RESUMO

The pyrolytic production of Fe-enriched composite biochar is receiving increasing attention. However, understanding of the environmental risk from the polycyclic aromatic hydrocarbons (PAHs) potentially generated during composite biochar production is lacking. This study investigated the formation of PAHs from the pyrolysis of barley straw impregnated with FeCl3 or Fe(NO3)3 at 350 °C, 500 °C, and 650 °C. The total amount of PAHs formation increased with increasing heating temperature. Most of the PAHs were concentrated in bio-oil (72.7-94.6%), with only a small fraction retained in biochar (1.7-11.1%) and in biogas (2.2-16.2%). Preloading FeCl3 or Fe(NO3)3 onto the biomass greatly reduced PAH formation by up to 33% and 21%, respectively, compared to that obtained with biomass alone. The suppressed formation of PAHs was due to the generation of more reductive forms of Fe, such as Fe0 and FeO, in the O2-starved pyrolysis atmosphere, which reduced C2H2 and C6H5OH, two important PAH precursors in hydrogen abstraction acetylene addition reactions. Although Fe loading reduced the amounts of PAHs in biochar, the toxic equivalent value increased because Fe induced more accumulation of high-molecular-weight PAHs in the biochar. This study proved that Fe loading suppresses PAH generation during biomass pyrolysis, which can guide the design of composite biochar production.


Assuntos
Carvão Vegetal/química , Cloretos/química , Compostos Férricos/química , Nitratos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hordeum , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pirólise
11.
Ecotoxicol Environ Saf ; 191: 110001, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812281

RESUMO

The interference of toxic heavy metals in the process of microbial aerobic denitrification is a hot issue in industry wastewater treatment in recent years. In this study, a multifunctional aerobic denitrifying bacterium - Pseudomonas aeruginosa G12 isolated from sewage sludge was used to explore the simultaneous removal ability to NO3--N and Cr(VI) in wastewater by a series of batch experiments. The results showed that G12 could effectively remove NO3--N (500 mg L-1) and Cr(VI) (10 mg L-1) by 98% and 93%, respectively. Meanwhile, the study found that the strain G12 had the potential to adapt to the complex external environment, including different carbon resources, nitrogen sources, and the coexisting heavy metals (Mn2+ and Cu2+). The strain G12 also had the considerable tolerance to initial NO3--N (100-700 mg L-1) and Cr(VI) (1-20 mg L-1) concentrations. The instrument analysis methods-Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), from the molecular level, further confirmed that the strain G12 could remove NO3--N by aerobic denitrification, and the reduced functional groups (amino group, amide group, hydroxyl group and carboxyl group) on the surface of bacteria could transform Cr(VI) to Cr(III) (mainly CrCl3). This study will offer a promising new microbial resource for nitrogen and Cr(VI) removal in industry wastewater treatment.


Assuntos
Cromo/metabolismo , Nitratos/metabolismo , Pseudomonas aeruginosa/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Desnitrificação , Metais Pesados/metabolismo , Nitratos/química , Óxidos de Nitrogênio/metabolismo , Esgotos/microbiologia
12.
Environ Pollut ; 254(Pt B): 113114, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31491698

RESUMO

Biochar as a porous carbon material could be used for improving soil physical and chemical properties, while insufficient attention has been paid to potential risks induced by infiltration of heavy metals in the runoff water flowing through biochar-amended soil. Four different soil-biochar matrices with same volumes were constructed including soil alone (M1), biochar alone (M2), soil-biochar layering (M3) and soil-biochar mixing (M4). Leaching experiments were conducted with Pb, Cu, and Zn contaminated runoff water. Results showed that biochar amendment greatly improved the water permeation, and the infiltration rates in M2, M3, and M4 were 2.85-23.0 mm min-1, being much higher than those in M1 (1.33-4.05 mm min-1), though the rates decreased as the leaching volumes increased. However, biochar induced more Pb, Cu, and Zn infiltrated through soil-biochar matrix. After 350-L leaching, M1 retained about 95% Pb, 90% Cu, and 36% Zn, while M2 only retained 4.80% Pb, 17.4% Cu, and 4.01% Zn; about 30% Pb, 80% Cu, and 15% Zn were retained in M3 and M4. Notably, Zn was trapped first and then re-leached into the filtrate, which resulted in a much higher effluent Zn than the influent Zn at the later stage. However, the unit weight of biochar showed a higher capacity for retaining heavy metals compared to per unit of soil. Under the dynamic water flow, all benefits and disadvantages induced by biochar were weakened with its physical disintegration. Biochar as soil amendment can enhance plant growth via ameliorating soil structure, while it would pose risks to environment because of large penetration of heavy metals. If biochar was compacted to form a denser physical structure, perhaps more heavy metals could be retained.


Assuntos
Carvão Vegetal , Metais Pesados/química , Poluentes do Solo/química , Solo/química , Água Subterrânea
13.
Oncol Lett ; 17(2): 2523-2530, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675314

RESUMO

Recent studies have reported that metformin (Met), the first-line medication for the treatment of type 2 diabetes, exhibited anticancer and chemoprotective effects in diverse cancer cells. In this study, we investigated the effects of Met on the drug-resistance of 4T1 murine breast cancer tumorspheres (TS) and the mechanism responsible for its drug-resistance. 4T1 TS exhibited accumulations of cells at the G0/G1 phase compared with cells in monolayer culture, which suggested the majority of cells in TS were quiescent. Furthermore, it was identified that activations of the signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT) signaling pathways in 4T1 TS conferred drug-resistance to doxorubicin (Dox) and lapatinib (Lapa). However, Met selectively targeted TS rather than cells in monolayer culture and increased the cytotoxic effect of Dox on TS by inhibiting activations of the STAT3 and AKT signaling pathways. These observations suggested that inhibitions of STAT3 and AKT underlie the selective cytotoxic effects of Met on TS. In addition, Met exhibited synergistic antitumor effects with Dox on 4T1 tumor-bearing BALB/c mice. Our findings suggest that combinations of Met and cytotoxic anticancer drugs may offer an advantage for treating drug-resistant breast cancer.

14.
Chemosphere ; 214: 846-854, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316177

RESUMO

Nickel-containing wastewater is a serious hazard to water environment, so that it is a burning issue to find an efficient and environment-friendly adsorbent. The conventional biochar could not effectively adsorb nickel (Ni(II)), so our study focuses on exploring the adsorption of chemically modified biochar to Ni(II). In this study, the biochar derived from waste peanut shell was modified by KMnO4 and KOH (MBC). And a series of experiment were carried out to evaluate the sorption ability and explore adsorption mechanism of modified biochar to Ni(II). The results showed the adsorption ability of MBC to Ni(II) reached 87.15 mg g-1. And the reaction process was spontaneous and endothermic chemisorption. Meanwhile, the analysis of FTIR and XPS visually revealed that the amine groups in the modified biochar could form NH2Ni with Ni(II) by complexation, while the hydroxyl could form nickel hydroxide and complexed nickel oxide by co-precipitation and complexation. This research showed this novel MBC is a promising adsorbent and has a fantastic prospect in the application of nickel-containing wastewater.


Assuntos
Arachis/química , Carvão Vegetal/química , Níquel/química
15.
Environ Sci Pollut Res Int ; 25(31): 31346-31357, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30194580

RESUMO

Modified biochar has attracted wide attention due to its advantageous adsorption performance. However, the influence of modification process of biochar on adsorption capacity was seldom studied. In this study, biochar derived from corn stalks was modified through two kinds of modification processes: pre-pyrolysis (MBCpre) and post-pyrolysis (MBCpost) modification with citric acid, sodium hydroxide, ferric chloride, respectively. The results showed that the biochar modified by ferric chloride (MBC) provided better adsorption capacity for Cr(VI), and the pre-pyrolysis offered more favorable adsorption capacity for biochar than post-pyrolysis. By means of instrumental analysis, it was found that MBCpre owned highly dispersed Fe3O4 particles and larger surface area, which could be the critical role for enhancing the adsorption capacity of MBCpre. Meanwhile, MBCpost appeared more protonated oxygen-rich functional groups(C=O, -OH, etc.) and adsorbed Cr(VI) by electrostatic attraction and complexation. This study will offer a novel idea for the treatment of chromium-containing wastewater by selecting the modification processes of biochar. Graphical abstract.


Assuntos
Carvão Vegetal/química , Cromo/química , Poluentes Químicos da Água/química , Adsorção , Cloretos/química , Compostos Férricos/química , Águas Residuárias , Zea mays
16.
Oncol Rep ; 37(2): 1219-1226, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28035396

RESUMO

TAM receptor tyrosine kinases (RTKs), Tyro3, Axl and MerTK, transduce diverse signals responsible for cell survival, growth, proliferation and anti-apoptosis. In the present study, we demonstrated the effect of luteolin, a flavonoid with antioxidant, anti-inflammatory and anticancer activities, on the expression and activation of TAM RTKs and the association with its cytotoxicity in non-small cell lung cancer (NSCLC) cells. We observed the cytotoxic effect of luteolin in parental A549 and H460 cells as well as in cisplatin-resistant A549/CisR and H460/CisR cells. Exposure of these cells to luteolin also resulted in a dose­dependent decrease in clonogenic ability. Next, luteolin was found to decrease the protein levels of all three TAM RTKs in the A549 and A549/CisR cells in a dose­dependent manner. In a similar manner, in H460 and H460/CisR cells, the protein levels of Axl and Tyro3 were decreased following luteolin treatment. In addition, Axl promoter activity was decreased by luteolin, indicating that luteolin suppresses Axl expression at the transcriptional level. We next found that luteolin abrogated Axl phosphorylation in response to growth arrest-specific 6 (Gas6), its ligand, implying the inhibitory effect of luteolin on Gas6-induced Axl activation. Ectopic expression of Axl was observed to attenuate the antiproliferative effect of luteolin, while knockdown of the Axl protein level using a gold nanoparticle-assisted gene delivery system increased its cytotoxicity. In contrast to the inhibitory effect of luteolin on the expression of TAM RTKs, interleukin-8 (IL-8) production was not decreased by luteolin in H460 and H460/CisR cells, while IL-8 production/cell was increased. Collectively, our data suggest that TAM RTKs, but not IL-8, are promising therapeutic targets of luteolin to abrogate cell proliferation and to overcome chemoresistance in NSCLC cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-8/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Luteolina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
17.
Oncotarget ; 7(50): 83308-83318, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27829217

RESUMO

Breast cancer is the most common malignant disease occurring in women and represents a substantial proportion of the global cancer burden. In these patients, metastasis but not the primary tumor is the main cause of breast cancer-related deaths. Here, we report the novel finding that DN10764 (AZD7762, a selective inhibitor of checkpoint kinases 1 and 2) can suppress breast cancer metastasis. In breast cancer cells, DN10764 inhibited cell proliferation and GAS6-mediated AXL signaling, consequently resulting in suppressed migration and invasion. In addition, DN10764 induced caspase 3/7-mediated apoptosis in breast cancer cells and inhibited tube formation of human umbilical vein endothelial cells. Finally, DN10764 significantly suppressed the tumor growth and metastasis of breast cancer cells in in vivo metastasis models. Taken together, these data suggest that therapeutic strategies targeting AXL in combination with systemic therapies could improve responses to anti-cancer therapies and reduce breast cancer recurrence and metastases.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Ureia/análogos & derivados , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ureia/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
18.
Analyst ; 134(7): 1396-404, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19562208

RESUMO

A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).


Assuntos
Cobalto/química , Medições Luminescentes/métodos , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Difusão , Eletroquímica , Cinética , Medições Luminescentes/instrumentação , Oxigênio/química , Potenciometria , Procaterol/análise , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA