Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Hosp Psychiatry ; 83: 86-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37148598

RESUMO

OBJECTIVE: Multiple studies have indicated that electroconvulsive therapy (ECT) could increase brain-derived neurotrophic factor (BDNF) concentrations in patients with different mental disorders. The aim of this synthesis was to evaluate post-ECT BDNF concentrations in patients with various mental disorders. METHODS: The Embase, PubMed and Web of Science databases were systematically searched for studies in English comparing BDNF concentrations before and after ECT through 11/2022. We extracted the pertinent information from the included studies and evaluated their quality. The standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated to quantify BDNF concentration differences. RESULTS: In total, 35 studies assessed BDNF concentrations in 868 and 859 patients pre and post-ECT treatment, respectively. Post-ECT-treatment BDNF concentrations were significantly higher than the pretreatment concentrations (Hedges'g = -0.50, 95% CI (-0.70, -0.30), heterogeneity I2 = 74%, p < 0.001). The analysis that combined both ECT responders and non-responders demonstrated a marked increase in total BDNF levels subsequent to ECT treatment (Hedges'g = -0.27, 95% CI (-0.42, -0.11), heterogeneity I2 = 40%, p = 0.0007). CONCLUSION: Irrespective of the effectiveness of ECT, Our study shows that peripheral BDNF concentrations increase significantly after the entire course of ECT, which may enhance our comprehension of the interplay between ECT treatment and BDNF levels. However, BDNF concentrations were not associated with the effectiveness of ECT, and abnormal concentrations of BDNF may be linked to the pathophysiological process of mental illness, necessitating more future research.


Assuntos
Eletroconvulsoterapia , Transtornos Mentais , Humanos , Fator Neurotrófico Derivado do Encéfalo , Transtornos Mentais/terapia
2.
Front Bioeng Biotechnol ; 10: 850650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372318

RESUMO

An electrical signal is the key basis of normal physiological function of the nerve, and the stimulation of the electric signal also plays a very special role in the repair process of nerve injury. Electric stimulation is shown to be effective in promoting axonal regeneration and myelination, thereby promoting nerve injury repair. At present, it is considered that electric conduction recovery is a key aspect of regeneration and repair of long nerve defects. Conductive neural scaffolds have attracted more and more attention due to their similar electrical properties and good biocompatibility with normal nerves. Herein, PCL and MXene-PCL nerve guidance conduits (NGCs) were prepared; their effect on nerve regeneration was evaluated in vitro and in vivo. The results show that the NGCs have good biocompatibility in vitro. Furthermore, a sciatic nerve defect model (15 mm) of SD rats was made, and then the fabricated NGCs were implanted. MXene-PCL NGCs show similar results with the autograft in the sciatic function index, electrophysiological examination, angiogenesis, and morphological nerve regeneration. It is possible that the conductive MXene-PCL NGC could transmit physiological neural electric signals, induce angiogenesis, and stimulate nerve regeneration. This paper presents a novel design of MXene-PCL NGC that could transmit self-originated electric stimulation. In the future, it can be combined with other features to promote nerve regeneration.

4.
World Neurosurg ; 153: e380-e391, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224885

RESUMO

OBJECTIVE: In spinal surgery, considerable blood loss is increasingly treated with the local application of tranexamic acid (TXA). However, little is known about its cytotoxicity and effect on human fibroblasts. This study was to identify the effect of TXA solution on human fibroblast at different concentrations and exposure times in vitro. METHODS: To mimic the actual clinical situation, human fibroblasts were subjected to both limited and chronic exposure to various clinically relevant concentrations of TXA to mimic different ways of topical administration. At time points after treatment, the viability, proliferation, apoptosis, collagen synthesis, adhesion, and migration of fibroblasts were analyzed in vitro. RESULTS: Limited exposure (10 minutes) to a high concentration of TXA (100 mg/mL) did not affect the viability, proliferation, and apoptosis of fibroblasts, and chronic exposure to low concentration of TXA (≤12.5 mg/mL) exerted little effect on viability, proliferation, apoptosis, collagen synthesis, adhesion, and migration of human fibroblasts (P > 0.05). However, the chronic exposure to a high concentration of TXA (≥25 mg/mL) can inhibit the viability, proliferation, collagen synthesis, adhesion and migration, and induce apoptosis of fibroblasts. CONCLUSIONS: Although limited exposure to high concentration of TXA and chronic exposure to low concentration of TXA exerted little effect on fibroblasts, chronic exposure to high concentration of TXA can lead to fibroblast injury.


Assuntos
Antifibrinolíticos/toxicidade , Fibroblastos/efeitos dos fármacos , Ácido Tranexâmico/toxicidade , Antifibrinolíticos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Coluna Vertebral/cirurgia , Ácido Tranexâmico/administração & dosagem
5.
World J Stem Cells ; 12(4): 266-276, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32399135

RESUMO

Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.

6.
Cell Biochem Funct ; 38(2): 130-140, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31957071

RESUMO

Diabetes mellitus (DM) is a dependent risk factor in the progression of intervertebral disc degeneration (IVDD). High glucose supply has negative effects on nucleus pulpous (NP) cell and mesenchymal stem cell (MSC) biology. However, the effect of hyperglycaemia on the biological characterization of nucleus pulpous-derived mesenchymal stem cell (NPMSC) has not been investigated previously. Therefore, further exploration of the effects of DM-associated hyperglycaemia on NPMSC biology is important to better understand and develop endogenous repair strategies of DM patient-associated IVDD. Therefore, the cell biological characteristics were compared between NPMSC cultured in media with low glucose concentration (LG-NPMSC) and high glucose concentration (HG-NPMSC). The results demonstrated that HG-NPMSC showed significantly decreased cell proliferation, colony formation ability, migration and wound-healing capability compared with those of LG-NPMSC. HG-NPMSC also showed significantly decreased expressions of stemness genes and mRNA and protein expressions of silent information regulator protein 1 (SIRT1), SIRT6, hypoxia inducible factor-1α (HIF-1α) and glucose transporter 1 (GLUT-1), whereas increased cell apoptosis, cell senescence and caspase-3 expression. These results suggest that high glucose may decrease proliferation and stemness maintenance ability and increase apoptosis and senescence of NPMSC. SIGNIFICANCE OF THE STUDY: We found that high glucose concentration significantly decreased cell proliferation, colony formation ability, migration and wound-healing capability of nucleus pulposus-derived mesenchymal stem cells. Moreover, high glucose cultured nucleus pulposus-derived mesenchymal stem cells showed significantly decreased expression of stemness genes, related mRNA and protein, whereas increased cell apoptosis, cell senescence and expression of caspase-3. The present study indicated that better control of high concentration glucose in the early stage of diabetes mellitus should be recommended to prevent or limit intervertebral disc degeneration.


Assuntos
Glucose/metabolismo , Células-Tronco Mesenquimais/citologia , Núcleo Pulposo/citologia , Animais , Apoptose , Caspase 3/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Transportador de Glucose Tipo 1/metabolismo , Hiperglicemia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunofenotipagem , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
7.
World J Stem Cells ; 12(12): 1603-1622, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33505603

RESUMO

BACKGROUND: To date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury. AIM: To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism. METHODS: The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay. RESULTS: 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved. CONCLUSION: 6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.

8.
Connect Tissue Res ; 61(6): 554-567, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294637

RESUMO

Purpose: To investigate the protective effect of naringin (Nar) on H2O2-induced apoptosis of nucleus pulposus-derived mesenchymal stem cells (NPMSC) and the potential mechanism in this process. Methods: Rat NPMSC were cultured in MSC culture medium or culture medium with different concentrations of H2O2. Nar or the combination of Nar and LY294002 was added into the culture medium to investigate the effects of Nar. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined using Annexin V/PI dual staining and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays. Additionally, the levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. ATP level in NPMSC was analyzed via ATP detection kit. Mitochondrial ultrastructure change was observed through transmission electron microscope (TEM). Levels of apoptosis-associated molecules (cleaved caspase-3, Bax and Bcl-2) were evaluated via RT-PCR and western blot, respectively. Results: The cells isolated from NP met the criteria for MSC. H2O2 significantly promoted NPMSC apoptosis in a dose and time-dependent manner. Nar showed no cytotoxicity effect on NPMSC up to a concentration of 100 µM for 24 h. Nar exhibited protective effects against H2O2-induced NPMSC apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. Nar could also alleviate H2O2-induced mitochondrial dysfunction of increased mitochondrial ROS production, reduced MMP, decreased intracellular ATP and mitochondrial ultrastructure change. However, these protected effects were inhibited after LY294002 treatment. Conclusions: Our results demonstrated that Nar efficiently attenuated H2O2-induced NPMSC apoptosis and mitochondrial dysfunction. The activation of ROS-mediated PI3K/Akt pathway may be the potential mechanism in this process.


Assuntos
Apoptose , Flavanonas/farmacologia , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/patologia , Núcleo Pulposo/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavanonas/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Modelos Biológicos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
Stem Cells Int ; 2019: 8496025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737077

RESUMO

Stem cell-based tissue engineering in treating intervertebral disc (IVD) degeneration is promising. An appropriate cell scaffold can maintain the viability and function of transplanted cells. Injectable hydrogel has the potential to be an appropriate cell scaffold as it can mimic the condition of the natural extracellular matrix (ECM) of nucleus pulposus (NP) and provide binding sites for cells. This study was aimed at investigating the effect of injectable hydrogel-loaded NP-derived mesenchymal stem cells (NPMSC) for the treatment of IVD degeneration (IDD) in rats. In this study, we selected injectable 3D-RGD peptide-modified polysaccharide hydrogel as a cell transplantation scaffold. In vitro, the biocompatibility, microstructure, and induced differentiation effect on NPMSC of the hydrogel were studied. In vivo, the regenerative effect of hydrogel-loaded NPMSC on degenerated NP in a rat model was evaluated. The results showed that NPMSC was biocompatible and able to induce differentiation in hydrogel in vivo. The disc height index (almost 87%) and MRI index (3313.83 ± 227.79) of the hydrogel-loaded NPMSC group were significantly higher than those of other groups at 8 weeks after injection. Histological staining and immunofluorescence showed that the hydrogel-loaded NPMSC also partly restored the structure and ECM content of degenerated NP after 8 weeks. Moreover, the hydrogel could support long-term NPMSC survival and decrease cell apoptosis rate of the rat IVD. In conclusion, injectable hydrogel-loaded NPMSC transplantation can delay the level of IDD and promote the regeneration of the degenerative IVD in the rat model.

10.
Connect Tissue Res ; 60(4): 376-388, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31119993

RESUMO

Purpose: To evaluate the change on biological characteristics of mesenchymal stem cell (MSC) derived from normal and degenerative intervertebral disc (IVD). Methods: MSC was isolated from normal and degenerative IVD rat model. Immunophenotype detected by flow cytometric analysis, expression of stemness genes determined by reverse-transcription polymerase chain reaction (RT-PCR) and osteogenic, adipogenic and chondrogenic differentiation were compared between MSC derived from normal IVD (N-NPMSC) and degenerative IVD (D-NPMSC). The biological characteristics including cell proliferation, colony formation, apoptosis, caspase-3 activity and mRNA and protein expressions of hypoxia inducible factor-1α (HIF-1α), glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), silent information regulator protein 1 (SIRT1) and silent information regulator protein 6 (SIRT6) were compared between N-NPMSC and D-NPMSC. Results: Both of N-NPMSC and D-NPMSC highly expressed CD105, CD90 and CD73, and lower expressed CD34 and CD45. There was no significant difference in cell morphology and multipotent differentiation ability between N-NPMSC and D-NPMSC. D-NPMSC showed significantly lower expressions of stemness genes, cell proliferation and colony formation ability. D-NPMSC also exhibited increased cell apoptosis rate and caspase-3 expression, and significantly lower expressions of HIF-1α, GLUT-1, VEGF, SIRT1 and SIRT6 in mRNA and protein levels compared with N-NPMSC. Conclusions: N-NPMSC showed significantly higher proliferation rate, better colony forming and stemness maintenance ability, whereas reduced cell apoptosis rate compared with D-NPMSC. HIF-1α-mediated signal pathway may be involved in the regulation of NPMSC proliferation. These findings indicated that degenerative change of IVD should be taken into account when selecting a source of NPMSC for clinical application.


Assuntos
Degeneração do Disco Intervertebral/patologia , Células-Tronco Mesenquimais/patologia , Núcleo Pulposo/patologia , Animais , Apoptose , Caspase 3/metabolismo , Diferenciação Celular , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Regulação da Expressão Gênica , Imunofenotipagem , Degeneração do Disco Intervertebral/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Comunicação Parácrina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...