Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21888, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318525

RESUMO

The recent improvements of complementary metal-oxide-semiconductor (CMOS) image sensors are playing an essential role in emerging high-definition video cameras, which provide viewers with a stronger sensation of reality. However, the devices suffer from decreasing sensitivity due to the shrinkage of pixels. We herein address this problem by introducing a hybrid structure comprising crystalline-selenium (c-Se)-based photoconversion layers and 8 K resolution (7472 × 4320 pixels) CMOS field-effect transistors (FETs) to amplify signals using the avalanche multiplication of photogenerated carriers. Using low-defect-level NiO as an electric field buffer and an electron blocking layer, we confirmed signal amplification by a factor of approximately 1.4 while the dark current remained low at 2.6 nA/cm2 at a reverse bias voltage of 22.6 V. Furthermore, we successfully obtained a brighter image based on the amplified signals without any notable noise degradation.

2.
Med Phys ; 36(9): 4047-58, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810477

RESUMO

PURPOSE: A new concept of indirect conversion flat-panel imager with avalanche gain and field emitter array (FEA) readout is being investigated. It is referred to as scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The present work investigates the temporal performance, i.e., lag, of SAPHIRE. METHODS: Since the temporal performance of the x-ray detection materials, i.e., the structured scintillator and avalanche amorphous selenium (a-Se) photoconductor, has been studied previously, the investigation is focused on lag due to the FEA readout method. The principle of FEA readout is similar to that of scanning electron beam readout used in camera tubes, where the dominant source of lag is the energy spread of electrons. Since the principles of emission and beam focusing methods for FEA are different from thermionic emission used in camera tubes, its electron beam energy spread and hence lag is expected to be different. In the present work, the energy spread of the electrons emitted from a FEA was investigated theoretically by analyzing different contributing factors due to the FEA design and operations: The inherent energy spread of field emission, the FEA driving pulse delay, and the angular distribution of emitted electrons. The electron energy spread determined the beam acceptance characteristic curve of the photoconductive target, i.e., the accepted beam current (I(a)) as a function of target potential (V(t)), from which lag could be calculated numerically. Lag calculation was performed using FEA parameters of two prototype HARP-FEA image sensors, and the results were compared with experimental measurements. Strategies for reducing lag in SAPHIRE were proposed and analyzed. RESULTS: The theoretical analysis shows that the dominant factor for lag is the angular distribution of electrons emitted from the FEA. The first frame lags for two prototype sensors with 4 and 25 microm HARP layer thicknesses were 62.1% and 9.1%, respectively. A lag clearance procedure can be implemented by turning on all the FEA pixels simultaneously between subsequent frames without negative impact of readout speed. For large-area SAPHIRE, the bias electrode for the HARP needs to be divided into strips to allow parallel readout. With typical cardiac detector parameters, SAPHIRE with 128 parallel strips can provide real-time readout (30 frames/s) with first frame lag of -4%. CONCLUSIONS: The investigation of lag in SAPHIRE shows that the angular distribution of emitted electrons from FEA can result in substantial lag if the readout was performed pixel by pixel. Effective strategies for reducing lag include dividing the bias electrode into multiple strips to allow parallel readout and the incorporation of rapid charge clearance procedure between subsequent frames or rows.


Assuntos
Radiografia/instrumentação , Radiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Eletrodos , Elétrons , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA