Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724748

RESUMO

Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000-50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.

2.
Nat Struct Mol Biol ; 30(10): 1571-1581, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696956

RESUMO

Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.


Assuntos
Cromatina , Nucleossomos , Animais , Camundongos , Histonas/metabolismo , DNA , Montagem e Desmontagem da Cromatina , Adenosina Trifosfatases/metabolismo , Mamíferos/genética
3.
Science ; 376(6591)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35949260

RESUMO

Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage and repair processes that have arisen in each patient's cancer. We performed mutational signature analyses on 12,222 WGS tumor-normal matched pairs, from patients recruited via the UK National Health Service. We contrasted our results to two independent cancer WGS datasets, the International Cancer Genome Consortium (ICGC) and Hartwig Foundation, involving 18,640 WGS cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. Critically, we show for each organ, that cancers have a limited number of 'common' signatures and a long tail of 'rare' signatures. We provide a practical solution for utilizing this concept of common versus rare signatures in future analyses.


Assuntos
Neoplasias , Sequência de Bases , Estudos de Coortes , Análise Mutacional de DNA/métodos , Humanos , Mutação , Neoplasias/genética , População/genética , Reino Unido
4.
Nat Cancer ; 1(2): 249-263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32118208

RESUMO

Mutational signatures are patterns of mutations that arise during tumorigenesis. We present an enhanced, practical framework for mutational signature analyses. Applying these methods on 3,107 whole genome sequenced (WGS) primary cancers of 21 organs reveals known signatures and nine previously undescribed rearrangement signatures. We highlight inter-organ variability of signatures and present a way of visualizing that diversity, reinforcing our findings in an independent analysis of 3,096 WGS metastatic cancers. Signatures with a high level of genomic instability are dependent on TP53 dysregulation. We illustrate how uncertainty in mutational signature identification and assignment to samples affects tumor classification, reinforcing that using multiple orthogonal mutational signature data is not only beneficial, it is essential for accurate tumor stratification. Finally, we present a reference web-based tool for cancer and experimentally-generated mutational signatures, called Signal (https://signal.mutationalsignatures.com), that also supports performing mutational signature analyses.


Assuntos
Neoplasias , Carcinogênese , Humanos , Mutação/genética , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...