Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 4(5): 682-698, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37169843

RESUMO

Antisense RNAs are ubiquitous in human cells, yet their role is largely unexplored. Here we profiled antisense RNAs in the MDA-MB-231 breast cancer cell line and its highly lung metastatic derivative. We identified one antisense RNA that drives cancer progression by upregulating the redox enzyme NADPH quinone dehydrogenase 1 (NQO1), and named it NQO1-AS. Knockdown of either NQO1 or NQO1-AS reduced lung colonization in a mouse model, and investigation into the role of NQO1 indicated that it is broadly protective against oxidative damage and ferroptosis. Breast cancer cells in the lung are dependent on this pathway, and this dependence can be exploited therapeutically by inducing ferroptosis while inhibiting NQO1. Together, our findings establish a role for NQO1-AS in the progression of breast cancer by regulating its sense mRNA post-transcriptionally. Because breast cancer predominantly affects females, the disease models used in this study are of female origin and the results are primarily applicable to females.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Neoplasias Cutâneas , Animais , Camundongos , Feminino , Humanos , Neoplasias da Mama/genética , RNA Antissenso , Quinonas/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Melanoma Maligno Cutâneo
2.
Nat Cancer ; 2(6): 643-657, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164627

RESUMO

Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies.


Assuntos
Neoplasias Colorretais , Células-Tronco Pluripotentes Induzidas , Neoplasias Encefálicas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias Colorretais/genética , Dano ao DNA/genética , Humanos , Mutação , Síndromes Neoplásicas Hereditárias
3.
Biochem J ; 473(19): 3269-90, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27407165

RESUMO

Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered ß-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the ß-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.


Assuntos
Serpinas/metabolismo , Regulação Alostérica , Anticorpos Monoclonais/química , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Mutagênese Sítio-Dirigida , Polimerização , Temperatura , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA