Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-36340844

RESUMO

BACKGROUND: In 2004-2005, an outbreak of impetigo occurred at a correctional facility during a sentinel outbreak of methicillin- resistant Staphylococcus aureus (MRSA) in Alberta, Canada. Next-generation sequencing (NGS) was used to characterize the group A Streptococcus (GAS) isolates and evaluate whether genomic biomarkers could distinguish between those recovered alone and those co-isolated with S. aureus. METHODS: Superficial wound swabs collected from all adults with impetigo during this outbreak were cultured using standard methods. NGS was used to characterize and compare all of the GAS and S. aureus genomes. RESULTS: Fifty-three adults were culture positive for GAS, with a subset of specimens also positive for MRSA (n = 5) or methicillin-sensitive S. aureus (n = 3). Seventeen additional MRSA isolates from this facility from the same time frame (no GAS co-isolates) were also included. All 78 bacterial genomes were analyzed for the presence of known virulence factors, plasmids, and antimicrobial resistance (AMR) genes. Among the GAS isolates were 12 emm types, the most common being 41.2 (n = 27; 51%). GAS genomes were phylogenetically compared with local and public datasets of invasive and non-invasive isolates. GAS genomes had diverse profiles for virulence factors, plasmids, and AMR genes. Pangenome analysis did not identify horizontally transferred genes in the co-infection versus single infections. CONCLUSIONS: GAS recovered from invasive and non-invasive sources were not genetically distinguishable. Virulence factors, plasmids, and AMR profiles grouped by emm type, and no genetic changes were identified that predict co-infection or horizontal gene transfer between GAS and S. aureus.


HISTORIQUE: En 2004­2005, une éclosion d'impétigo s'est manifestée dans un établissement correctionnel pendant une éclosion sentinelle de Staphylococcus aureus résistante à la méthicilline (SRAM) en Alberta, au Canada. Le séquençage de prochaine génération (SPG) a été utilisé pour caractériser les isolats du streptocoque du groupe (SGA) et évaluer si les biomarqueurs génomiques peuvent distinguer ceux qui se rétablissent seuls de ceux qui ont co-isolé le S. aureus. MÉTHODOLOGIE: Les chercheurs ont mis en culture des écouvillons de plaies cutanées superficielles prélevés chez tous les adultes atteints d'impétigo pendant cette éclosion. Ils ont utilisé le SNG pour caractériser et comparer tous les génomes du SPG et du S. aureus récupérés. RÉSULTATS: Cinquante-trois adultes étaient positifs au SGA, un sous-groupe d'échantillons était également positif au SRAM (n = 5) ou au S. aureus (n = 3) sensible à la méthicilline. Dix-sept autres isolats de SRAM provenant de cet établissement pendant la même période (pas de co-isolats du SGA) ont été inclus. Ils ont analysé l'ensemble des 78 génomes bactériens pour déceler la présence de facteurs de virulence connus, de plasmides et de gènes de résistance antimicrobienne (RAM). Parmi les isolats du SGA se trouvaient 12 types d'emm, les plus courants étant 41,2 (n = 27, 51 %). Les génomes du SGA ont été comparés sur le plan phylogénétique aux données locales et publiques sur les isolats invasifs et non invasifs. Les génomes du SGA présentaient divers profils de facteurs de virulence, de plasmides et de gènes de RAM. L'analyse du pangénome n'a pas permis de repérer les gènes transférés dans les génomes de co-infection ou les adaptations génétiques associées à une co-infection plutôt par rapport aux infections uniques. CONCLUSIONS: Le SGA prélevé de sources invasives ou non invasives n'était pas reconnaissable sur le plan génétique. Les facteurs de virulence, les plasmides et les profils de résistance antimicrobienne regroupés par type d'emm ne présentaient pas de changements génétiques prédicteurs d'une co- infection ou d'un transfert génétique horizontal entre le SGA et le S. aureus.

3.
Stem Cell Res Ther ; 12(1): 113, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546754

RESUMO

BACKGROUND: Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells. METHODS: We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis. The probe was compared with conventional dyes in different reprogramming methods, cell types, and cell culture conditions. Cell sorting was performed with the fluorescent probe to analyze the early reprogramming cells for their pluripotent characteristics and genome-wide gene expression signatures by RNA-seq. Finally, the candidate reprogramming factor identified was investigated for its ability to modulate reprogramming efficiency. RESULTS: We identified a novel BODIPY-derived fluorescent probe, BDL-E5, which detects live human iPS cells at the early reprogramming stage. BDL-E5 can recognize authentic reprogramming cells around 7 days before iPS colonies are formed and stained positive with conventional pluripotent markers. Cell sorting of reprogrammed cells with BDL-E5 allowed generation of an increased number and higher quality of iPS cells. RNA sequencing analysis of BDL-E5-positive versus negative cells revealed early reprogramming patterns of gene expression, which notably included CREB1. Reprogramming efficiency was significantly increased by overexpression of CREB1 and decreased by knockdown of CREB1. CONCLUSION: Collectively, BDL-E5 offers a valuable tool for delineating the early reprogramming pathway and clinically applicable commercial production of human iPS cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Cultivadas , Reprogramação Celular , Corantes Fluorescentes , Humanos , Transcriptoma
4.
J Allergy Clin Immunol ; 147(4): 1329-1340, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33039480

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common skin disease affecting up to 20% of the global population, with significant clinical heterogeneity and limited information about molecular subtypes and actionable biomarkers. Although alterations in the skin microbiome have been described in subjects with AD during progression to flare state, the prognostic value of baseline microbiome configurations has not been explored. OBJECTIVE: Our aim was to identify microbial signatures on AD skin that are predictive of disease fate. METHODS: Nonlesional skin of patients with AD and healthy control subjects were sampled at 2 time points separated by at least 4 weeks. Using whole metagenome analysis of skin microbiomes of patients with AD and control subjects (n = 49 and 189 samples), we identified distinct microbiome configurations (dermotypes A and B). Blood was collected for immunophenotyping, and skin surface samples were analyzed for correlations with natural moisturizing factors and antimicrobial peptides. RESULTS: Dermotypes were robust and validated across 2 additional cohorts (63 individuals), with strong enrichment of subjects with AD in dermotype B. Dermotype B was characterized by reduced microbial richness, depletion of Cutibacterium acnes, Dermacoccus and Methylobacterium species, individual-specific outlier abundance of Staphylococcus species (eg, S epidermidis, S capitis, S aureus), and enrichment in metabolic pathways (eg, branched chain amino acids and arginine biosynthesis) and virulence genes (eg, ß-toxin, δ-toxin) that defined a pathogenic ecology. Skin surface and circulating host biomarkers exhibited a distinct microbial-associated signature that was further reflected in more severe itching, frequent flares, and increased disease severity in patients harboring the dermotype B microbiome. CONCLUSION: We report distinct clusters of microbial profiles that delineate the role of microbiome configurations in AD heterogeneity, highlight a mechanism for ongoing inflammation, and provide prognostic utility toward microbiome-based disease stratification.


Assuntos
Dermatite Atópica/microbiologia , Microbiota , Pele/microbiologia , Adolescente , Adulto , Bactérias/genética , Bactérias/patogenicidade , Biomarcadores/sangue , Citocinas/sangue , Dermatite Atópica/sangue , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Pele/química , Pele/metabolismo , Testes Cutâneos , Virulência/genética , Água/metabolismo , Adulto Jovem
5.
Nat Ecol Evol ; 4(9): 1256-1267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632261

RESUMO

Loss of diversity in the gut microbiome can persist for extended periods after antibiotic treatment, impacting microbiome function, antimicrobial resistance and probably host health. Despite widespread antibiotic use, our understanding of the species and metabolic functions contributing to gut microbiome recovery is limited. Using data from 4 discovery cohorts in 3 continents comprising >500 microbiome profiles from 117 individuals, we identified 21 bacterial species exhibiting robust association with ecological recovery post antibiotic therapy. Functional and growth-rate analysis showed that recovery is supported by enrichment in specific carbohydrate-degradation and energy-production pathways. Association rule mining on 782 microbiome profiles from the MEDUSA database enabled reconstruction of the gut microbial 'food web', identifying many recovery-associated bacteria as keystone species, with the ability to use host- and diet-derived energy sources, and support repopulation of other gut species. Experiments in a mouse model recapitulated the ability of recovery-associated bacteria (Bacteroides thetaiotaomicron and Bifidobacterium adolescentis) to promote recovery with synergistic effects, providing a boost of two orders of magnitude to microbial abundance in early time points and faster maturation of microbial diversity. The identification of specific species and metabolic functions promoting recovery opens up opportunities for rationally determining pre- and probiotic formulations offering protection from long-term consequences of frequent antibiotic usage.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos , Bactérias/genética , Humanos , Metagenoma , Camundongos
6.
J Clin Invest ; 130(6): 3005-3020, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364535

RESUMO

Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.


Assuntos
Epigenômica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Telomerase/biossíntese , Transativadores/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação , Proteínas de Neoplasias/genética , Elementos de Resposta , Neoplasias Gástricas/genética , Telomerase/genética , Transativadores/genética
7.
Nature ; 578(7793): 129-136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025019

RESUMO

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , RNA/genética , Variações do Número de Cópias de DNA , DNA de Neoplasias , Genoma Humano , Genômica , Humanos , Transcriptoma
8.
Gut ; 69(6): 1039-1052, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31542774

RESUMO

OBJECTIVE: Genomic structural variations (SVs) causing rewiring of cis-regulatory elements remain largely unexplored in gastric cancer (GC). To identify SVs affecting enhancer elements in GC (enhancer-based SVs), we integrated epigenomic enhancer profiles revealed by paired-end H3K27ac ChIP-sequencing from primary GCs with tumour whole-genome sequencing (WGS) data (PeNChIP-seq/WGS). DESIGN: We applied PeNChIP-seq to 11 primary GCs and matched normal tissues combined with WGS profiles of >200 GCs. Epigenome profiles were analysed alongside matched RNA-seq data to identify tumour-associated enhancer-based SVs with altered cancer transcription. Functional validation of candidate enhancer-based SVs was performed using CRISPR/Cas9 genome editing, chromosome conformation capture assays (4C-seq, Capture-C) and Hi-C analysis of primary GCs. RESULTS: PeNChIP-seq/WGS revealed ~150 enhancer-based SVs in GC. The majority (63%) of SVs linked to target gene deregulation were associated with increased tumour expression. Enhancer-based SVs targeting CCNE1, a key driver of therapy resistance, occurred in 8% of patients frequently juxtaposing diverse distal enhancers to CCNE1 proximal regions. CCNE1-rearranged GCs were associated with high CCNE1 expression, disrupted CCNE1 topologically associating domain (TAD) boundaries, and novel TAD interactions in CCNE1-rearranged primary tumours. We also observed IGF2 enhancer-based SVs, previously noted in colorectal cancer, highlighting a common non-coding genetic driver alteration in gastric and colorectal malignancies. CONCLUSION: Integrated paired-end NanoChIP-seq and WGS of gastric tumours reveals tumour-associated regulatory SV in regions associated with both simple and complex genomic rearrangements. Genomic rearrangements may thus exploit enhancer-hijacking as a common mechanism to drive oncogene expression in GC.


Assuntos
Adenocarcinoma/metabolismo , Ciclina E/metabolismo , Elementos Facilitadores Genéticos/genética , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Variação Estrutural do Genoma/genética , Humanos , Neoplasias Gástricas/genética , Sequenciamento Completo do Genoma
9.
Gut ; 69(2): 231-242, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31068366

RESUMO

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality. Previous studies have shown that hepatocyte nuclear factor-4α (HNF4α) is specifically overexpressed in GC and functionally required for GC development. In this study, we investigated, on a genome-wide scale, target genes of HNF4α and oncogenic pathways driven by HNF4α and HNF4α target genes. DESIGN: We performed HNF4α chromatin immunoprecipitation followed by sequencing across multiple GC cell lines, integrating HNF4α occupancy data with (epi)genomic and transcriptome data of primary GCs to define HNF4α target genes of in vitro and in vivo relevance. To investigate mechanistic roles of HNF4α and HNF4α targets, we performed cancer metabolic measurements, drug treatments and functional assays including murine xenograft experiments. RESULTS: Gene expression analysis across 19 tumour types revealed HNF4α to be specifically upregulated in GCs. Unbiased pathway analysis revealed organic acid metabolism as the top HNF4α-regulated pathway, orthogonally supported by metabolomic analysis. Isocitrate dehydrogenase 1 (IDH1) emerged as a convergent HNF4α direct target gene regulating GC metabolism. We show that wild-type IDH1 is essential for GC cell survival, and that certain GC cells can be targeted by IDH1 inhibitors. CONCLUSIONS: Our results highlight a role for HNF4α in sustaining GC oncogenic metabolism, through the regulation of IDH1. Drugs targeting wild-type IDH1 may thus have clinical utility in GCs exhibiting HNF4α overexpression, expanding the role of IDH1 in cancer beyond IDH1/2 mutated malignancies.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Gástricas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491388

RESUMO

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Transcriptoma/genética , Bases de Dados Genéticas , Humanos , RNA-Seq/métodos
11.
Cancer Discov ; 7(11): 1284-1305, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893800

RESUMO

Protein-coding mutations in clear cell renal cell carcinoma (ccRCC) have been extensively characterized, frequently involving inactivation of the von Hippel-Lindau (VHL) tumor suppressor. Roles for noncoding cis-regulatory aberrations in ccRCC tumorigenesis, however, remain unclear. Analyzing 10 primary tumor/normal pairs and 9 cell lines across 79 chromatin profiles, we observed pervasive enhancer malfunction in ccRCC, with cognate enhancer-target genes associated with tissue-specific aspects of malignancy. Superenhancer profiling identified ZNF395 as a ccRCC-specific and VHL-regulated master regulator whose depletion causes near-complete tumor elimination in vitro and in vivoVHL loss predominantly drives enhancer/superenhancer deregulation more so than promoters, with acquisition of active enhancer marks (H3K27ac, H3K4me1) near ccRCC hallmark genes. Mechanistically, VHL loss stabilizes HIF2α-HIF1ß heterodimer binding at enhancers, subsequently recruiting histone acetyltransferase p300 without overtly affecting preexisting promoter-enhancer interactions. Subtype-specific driver mutations such as VHL may thus propagate unique pathogenic dependencies in ccRCC by modulating epigenomic landscapes and cancer gene expression.Significance: Comprehensive epigenomic profiling of ccRCC establishes a compendium of somatically altered cis-regulatory elements, uncovering new potential targets including ZNF395, a ccRCC master regulator. Loss of VHL, a ccRCC signature event, causes pervasive enhancer malfunction, with binding of enhancer-centric HIF2α and recruitment of histone acetyltransferase p300 at preexisting lineage-specific promoter-enhancer complexes. Cancer Discov; 7(11); 1284-305. ©2017 AACR.See related commentary by Ricketts and Linehan, p. 1221This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Fatores de Transcrição de p300-CBP/genética , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cromatina , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Oncogenes/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
12.
Gastroenterology ; 153(1): 191-204.e16, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390866

RESUMO

BACKGROUND & AIMS: Fibroblasts that interact with cancer cells are called cancer-associated fibroblasts (CAFs), which promote progression of different tumor types. We investigated the characteristics and functions of CAFs in diffuse-type gastric cancers (DGCs) by analyzing features of their genome and gene expression patterns. METHODS: We isolated CAFs and adjacent non-cancer fibroblasts (NFs) from 110 gastric cancer (GC) tissues from patients who underwent gastrectomy in Japan from 2008 through 2016. Cells were identified using specific markers of various cell types by immunoblot and flow cytometry. We selected pairs of CAFs and NFs for whole-exome and RNA sequencing analyses, and compared expression of specific genes using quantitative reverse transcription PCR. Protein levels and phosphorylation were compared by immunoblot and immunofluorescence analyses. Rhomboid 5 homolog 2 (RHBDF2) was overexpressed from a transgene in fibroblasts or knocked down using small interfering RNAs. Motility and invasiveness of isolated fibroblasts and GC cell lines (AGS, KATOIII, MKN45, NUGC3, NUGC4, OCUM-2MD3 and OCUM-12 cell lines) were quantified by real-time imaging analyses. We analyzed 7 independent sets of DNA microarray data from patients with GC and associated expression levels of specific genes with patient survival times. Nude mice were given injections of OCUM-2MD3 in the stomach wall; tumors and metastases were collected and analyzed by immunohistochemistry. RESULTS: Many of the genes with increased expression in CAFs compared with NFs were associated with transforming growth factor beta 1 (TGFB1) activity. When CAFs were cultured in extracellular matrix, they became more motile than NFs; DGC cells incubated with CAFs were also more motile and invasive in vitro than DGC cells not incubated with CAFs. When injected into nude mice, CAF-incubated DGC cells invaded a greater number of lymphatic vessels than NF-incubated DGC cells. We identified RHBDF2 as a gene overexpressed in CAFs compared with NFs. Knockdown of RHBDF2 in CAFs reduced their elongation and motility in response to TGFB1, whereas overexpression of RHBDF2 in NFs increased their motility in extracellular matrix. RHBDF2 appeared to regulate oncogenic and non-canonical TGFB1 signaling. Knockdown of RHBDF2 in CAFs reduced cleavage of the TGFB receptor 1 (TGFBR1) by ADAM metallopeptidase domain 17 (ADAM17 or TACE) and reduced expression of genes that regulate motility. Incubation of NFs with in interleukin 1 alpha (IL1A), IL1B or tumor necrosis factor, secreted by DGCs, increased fibroblast expression of RHBDF2. Simultaneous high expression of these cytokines in GC samples was associated with shorter survival times of patients. CONCLUSIONS: In CAFs isolated from human DGCs, we observed increased expression of RHBDF2, which regulates TGFB1 signaling. Expression of RHBDF2 in fibroblasts is induced by inflammatory cytokines (such as IL1A, IL1B, and tumor necrosis factor) secreted by DGCs. RHBDF2 promotes cleavage of TGFBR1 by activating TACE and motility of CAFs in response to TGFB1. These highly motile CAFs induce DGCs to invade extracellular matrix and lymphatic vessels in nude mice.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Neoplasias Gástricas/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína ADAM17/metabolismo , Animais , Proteínas de Transporte/análise , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Exoma , Matriz Extracelular , Feminino , Expressão Gênica , Humanos , Interleucina-1alfa/farmacologia , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Transplante de Neoplasias , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Neoplasias Gástricas/química , Neoplasias Gástricas/patologia , Taxa de Sobrevida , Transcriptoma , Fator de Necrose Tumoral alfa/farmacologia
13.
Cancer Discov ; 7(6): 630-651, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320776

RESUMO

Promoter elements play important roles in isoform and cell type-specific expression. We surveyed the epigenomic promoter landscape of gastric adenocarcinoma, analyzing 110 chromatin profiles (H3K4me3, H3K4me1, H3K27ac) of primary gastric cancers, gastric cancer lines, and nonmalignant gastric tissues. We identified nearly 2,000 promoter alterations (somatic promoters), many deregulated in various epithelial malignancies and mapping frequently to alternative promoters within the same gene, generating potential pro-oncogenic isoforms (RASA3). Somatic promoter-associated N-terminal peptides displaying relative depletion in tumors exhibited high-affinity MHC binding predictions and elicited potent T-cell responses in vitro, suggesting a mechanism for reducing tumor antigenicity. In multiple patient cohorts, gastric cancers with high somatic promoter usage also displayed reduced T-cell cytolytic marker expression. Somatic promoters are enriched in PRC2 occupancy, display sensitivity to EZH2 therapeutic inhibition, and are associated with novel cancer-associated transcripts. By generating tumor-specific isoforms and decreasing tumor antigenicity, epigenomic promoter alterations may thus drive intrinsic tumorigenesis and also allow nascent cancers to evade host immunity.Significance: We apply epigenomic profiling to demarcate the promoter landscape of gastric cancer. Many tumor-specific promoters activate different promoters in the same gene, some generating pro-oncogenic isoforms. Tumor-specific promoters also reduce tumor antigenicity by causing relative depletion of immunogenic peptides, contributing to cancer immunoediting and allowing tumors to evade host immune attack. Cancer Discov; 7(6); 630-51. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 539.


Assuntos
Adenocarcinoma/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Epigenômica , Humanos
14.
Nat Commun ; 7: 12983, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677335

RESUMO

Regulatory enhancer elements in solid tumours remain poorly characterized. Here we apply micro-scale chromatin profiling to survey the distal enhancer landscape of primary gastric adenocarcinoma (GC), a leading cause of global cancer mortality. Integrating 110 epigenomic profiles from primary GCs, normal gastric tissues and cell lines, we highlight 36,973 predicted enhancers and 3,759 predicted super-enhancers respectively. Cell-line-defined super-enhancers can be subclassified by their somatic alteration status into somatic gain, loss and unaltered categories, each displaying distinct epigenetic, transcriptional and pathway enrichments. Somatic gain super-enhancers are associated with complex chromatin interaction profiles, expression patterns correlated with patient outcome and dense co-occupancy of the transcription factors CDX2 and HNF4α. Somatic super-enhancers are also enriched in genetic risk SNPs associated with cancer predisposition. Our results reveal a genome-wide reprogramming of the GC enhancer and super-enhancer landscape during tumorigenesis, contributing to dysregulated local and regional cancer gene expression.

15.
Gut ; 65(12): 1960-1972, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26338826

RESUMO

BACKGROUND: GI stromal tumours (GISTs) are clinically heterogenous exhibiting varying degrees of disease aggressiveness in individual patients. OBJECTIVES: We sought to identify genetic alterations associated with high-risk GIST, explore their molecular consequences, and test their utility as prognostic markers. DESIGNS: Exome sequencing of 18 GISTs was performed (9 patients with high-risk/metastatic and 5 patients with low/intermediate-risk), corresponding to 11 primary and 7 metastatic tumours. Candidate alterations were validated by prevalence screening in an independent patient cohort (n=120). Functional consequences of SETD2 mutations were investigated in primary tissues and cell lines. Transcriptomic profiles for 8 GISTs (4 SETD2 mutated, 4 SETD2 wild type) and DNA methylation profiles for 22 GISTs (10 SETD2 mutated, 12 SETD2 wild type) were analysed. Statistical associations between molecular, clinicopathological factors, and relapse-free survival were determined. RESULTS: High-risk GISTs harboured increased numbers of somatic mutations compared with low-risk GISTs (25.2 mutations/high-risk cases vs 6.8 mutations/low-risk cases; two sample t test p=3.1×10-5). Somatic alterations in the SETD2 histone modifier gene occurred in 3 out of 9 high-risk/metastatic cases but no low/intermediate-risk cases. Prevalence screening identified additional SETD2 mutations in 7 out of 80 high-risk/metastatic cases but no low/intermediate-risk cases (n=29). Combined, the frequency of SETD2 mutations was 11.2% (10/89) and 0% (0/34) in high-risk and low-risk GISTs respectively. SETD2 mutant GISTs exhibited decreased H3K36me3 expression while SETD2 silencing promoted DNA damage in GIST-T1 cells. In gastric GISTs, SETD2 mutations were associated with overexpression of HOXC cluster genes and a DNA methylation signature of hypomethylated heterochromatin. Gastric GISTs with SETD2 mutations, or GISTs with hypomethylated heterochromatin, showed significantly shorter relapse-free survival on univariate analysis (log rank p=4.1×10-5). CONCLUSIONS: Our data suggest that SETD2 is a novel GIST tumour suppressor gene associated with disease progression. Assessing SETD2 genetic status and SETD2-associated epigenomic phenotypes may guide risk stratification and provide insights into mechanisms of GIST clinical aggressiveness.


Assuntos
Biomarcadores Tumorais/genética , Tumores do Estroma Gastrointestinal/genética , Histona-Lisina N-Metiltransferase/genética , Mutação de Sentido Incorreto , Estudos de Casos e Controles , Códon sem Sentido/genética , Metilação de DNA/genética , Exoma/genética , Tumores do Estroma Gastrointestinal/epidemiologia , Tumores do Estroma Gastrointestinal/patologia , Histonas/genética , Humanos , Mutação de Sentido Incorreto/genética , Invasividade Neoplásica , Fenótipo , Prevalência , Prognóstico , Índice de Gravidade de Doença , Singapura/epidemiologia
17.
Genome Res ; 25(1): 129-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25236617

RESUMO

Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.


Assuntos
Burkholderia pseudomallei/genética , Epigênese Genética , Genoma Bacteriano , Recombinação Genética , Transcriptoma , Animais , Primers do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Feminino , Deleção de Genes , Estudos de Associação Genética , Genômica , Haplótipos , Humanos , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
J Bacteriol ; 195(24): 5487-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097950

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ∼2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes.


Assuntos
Autofagia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Apoptose , Linhagem Celular , Técnicas de Inativação de Genes , Teste de Complementação Genética , Células Gigantes/microbiologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana
19.
PLoS Genet ; 9(9): e1003795, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068961

RESUMO

Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes--Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes--quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an "accidental pathogen", where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.


Assuntos
Burkholderia pseudomallei/genética , Interações Hospedeiro-Parasita/genética , Melioidose/genética , Transcrição Gênica , Burkholderia pseudomallei/patogenicidade , Cromossomos/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Melioidose/microbiologia , Melioidose/patologia , Virulência/genética
20.
mBio ; 4(5): e00709-13, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24065633

RESUMO

The Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. Once considered an esoteric tropical disease confined to Southeast Asia and northern Australia, research on B. pseudomallei has recently gained global prominence due to its classification as a potential bioterrorism agent by countries such as the United States and also by increasing numbers of case reports from regions where it is not endemic. An environmental bacterium typically found in soil and water, assessing the true global prevalence of melioidosis is challenged by the fact that clinical symptoms associated with B. pseudomallei infection are extremely varied and may be confused with diverse conditions such as lung cancer, tuberculosis, or Staphyloccocus aureus infection. These diagnostic challenges, coupled with lack of awareness among clinicians, have likely contributed to underdiagnosis and the high mortality rate of melioidosis, as initial treatment is often either inappropriate or delayed. Even after antibiotic treatment, relapses are frequent, and after resolution of acute symptoms, chronic melioidosis can also occur, and the symptoms can persist for months to years. In a recent article, Price et al. [mBio 4(4):e00388-13, 2013, doi:10.1128/mBio.00388-13] demonstrate how comparative genomic sequencing can reveal the repertoire of genetic changes incurred by B. pseudomallei during chronic human infection. Their results have significant clinical ramifications and highlight B. pseudomallei's ability to survive in a wide range of potential niches within hosts, through the acquisition of genetic adaptations that optimize fitness and resource utilization.


Assuntos
Burkholderia pseudomallei/genética , Melioidose/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/isolamento & purificação , Burkholderia pseudomallei/metabolismo , Doença Crônica , Humanos , Melioidose/diagnóstico , Melioidose/tratamento farmacológico , Viabilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...