Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(1): e202300447, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926686

RESUMO

An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.


Assuntos
Doenças Transmissíveis , Pirróis , Humanos , Pirróis/farmacologia , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos
2.
Int J Biol Macromol ; 237: 123991, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907293

RESUMO

Despite possessing a wide spectrum of biological activities, molecular targets of EGCG remain elusive and as a result, its precise mode of action is still unknown. Herein, we have developed a novel cell-permeable and Click-able bioorthogonal probe for EGCG, YnEGCG for in situ detection and identification of its interacting proteins. The strategic structural modification on YnEGCG allowed it to retain innate biological activities of EGCG (IC50 59.52 ± 1.14 µM and 9.07 ± 0.01 µM for cell viability and radical scavenging activity, respectively). Chemoproteomics profiling identified 160 direct EGCG targets, with H:L ratio ≥ 1.10 from the list of 207 proteins, including multiple new proteins that were previously unknown. The targets were broadly distributed in various subcellular compartments suggesting a polypharmacological mode of action of EGCG. GO analysis revealed that the primary targets belonged to the enzymes that regulate key metabolic processes including glycolysis and energy homeostasis, also the cytoplasm (36 %) and mitochondria (15.6 %) contain the majority of EGCG targets. Further, we validated that EGCG interactome was closely associated with apoptosis indicating its role in inducing toxicity in cancer cells. For the first time, this in situ chemoproteomics approach could identify a direct and specific EGCG interactome under physiological conditions in an unbiased manner.


Assuntos
Catequina , Catequina/farmacologia , Proteômica , Apoptose , Proteínas
3.
Chem Commun (Camb) ; 59(13): 1728-1743, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36661305

RESUMO

Developing low-cost and reliable sensor systems for the detection of trace amounts of toxic gases is an important area of research. Ammonia (NH3) is a commonly produced industrial chemical and a harmful colorless pungent gas released from various manufacturing and processing industries. Continuous exposure to NH3 vapor causes serious menace to human health, microorganisms, and the ecosystem. Exposure to relatively higher concentrations of NH3 severely affects the respiratory system and leads to kidney failure, nasal erosion ulcers, and gastrointestinal diseases. Excessive accumulation of NH3 in the biosphere can cause various metabolic disruptions. As a consequence of this, therefore, suitable sensing methods for selective detection and quantification of trace amounts of NH3 are of utmost need to protect the environment and living systems. Given this, there have been significant research advances in the preceding years on the development of fluorescence chemosensors for efficient sensing and monitoring of the trace concentration of NH3 both in solution and vapor phases. This review article highlights several fluorescence chemosensors reported until recently for sensing and quantifying NH3 in the vapor phase or ammonium ions (NH4+) in the solution phase. The wide variety of fluorescence chemosensors discussed in this article are systematically gathered according to their structures, functional properties, and fluorescence sensing properties. Finally, the usefulness and existing challenges of using the fluorescence-based sensing method for NH3 detection and the future perspective on this research area have also been highlighted.


Assuntos
Amônia , Compostos de Amônio , Humanos , Amônia/química , Ecossistema , Fluorescência , Gases/química
4.
Sci Rep ; 12(1): 4815, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314752

RESUMO

The design and synthesis of a versatile class of macrocycles with tunable functional groups and ring size are unfolded. Herein, a synthetic strategy is reported to furnish a new class of macrocycles in multi-gram scale in a two-step reaction. The total time taken for synthesizing a macrocycle is 1.5 h. Dithiocarbamates, an important functional group in biomedical and material sciences, is strategically incorporated in the macrocyclic backbone without metal for the first time. It is noteworthy that when state-of-the-art macrocycle synthesis is in millimolar concentration, this work employs the reaction in molar concentration (0.2-0.4 M). As proof-of-principle, a library of macrocycles was synthesized, varying the functional groups and ring size. The physicochemical properties of macrocycles revealed their druggable nature and are affirmed by protein (serum albumin) interaction study theoretically and experimentally. Diverse functional groups and ring sizes of macrocycles brought about twenty-five-fold difference in binding constant with the model protein.


Assuntos
Compostos Macrocíclicos , Compostos Macrocíclicos/química , Proteínas
5.
Bioorg Chem ; 66: 72-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27038848

RESUMO

Elevated levels of carbonic anhydrase II (CA II) have been shown to be associated with cardiac hypertrophy and heart failure. Although arjunolic acid (AA) has a diverse range of therapeutic applications including cardio-protection, there have been no reports on the effect of AA on CA II. The present study describes for the first time, the novel zinc independent inhibition of CA II by AA. The molecular docking studies of AA indicated that the hydroxyl group at C2 of the A-ring, which hydrogen bonds with the catalytic site residues (His64, Asn62 and Asn67), along with the gem-dimethyl group at C20 of the E-ring, greatly influences the inhibitory activity, independent of the catalytic zinc, unlike the inhibition observed with most CA II inhibitors. Among the triterpenoids tested viz. arjunolic acid, arjunic acid, asiatic acid, oleanolic acid and ursolic acid, AA was the most potent in inhibiting CA II in vitro with an IC50 of 9µM. It was interesting to note, that in spite of exhibiting very little differences in their structures, these triterpenoids exhibited vast differences in their inhibitory activities, with IC50 values ranging from 9µM to as high as 333µM. Furthermore, AA also inhibited the cytosolic activity of CA in H9c2 cardiomyocytes, as reflected by the decrease in acidification of the intracellular pH (pHi). The decreased acidification reduced the intracellular calcium levels, which further prevented the mitochondrial membrane depolarization. Thus, these studies provide a better understanding for establishing the novel molecular mechanism involved in CA II inhibition by the non-zinc binding inhibitor AA.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Descoberta de Drogas , Triterpenos/farmacologia , Animais , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
6.
Bioorg Med Chem ; 23(13): 3781-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25907368

RESUMO

Eleven biflavones (7a-b and 9a-i) were synthesised by a simple and efficient protocol and screened for MMP-2 and MMP-9 inhibitory activities. Amongst them, a natural product-like analog, (I-3,II-3)-biacacetin (9h) was found to be the most potent inhibitor. Molecular docking studies suggest that unlike most of the known inhibitors, 9h inhibits MMP-2 and MMP-9 through non-zinc binding interactions.


Assuntos
Descoberta de Drogas , Flavonas/síntese química , Metaloproteinase 2 da Matriz/química , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Flavonas/farmacologia , Humanos , Ligação de Hidrogênio , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica
7.
Bioorg Med Chem Lett ; 24(19): 4735-4742, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25190466

RESUMO

Seventeen flavonoids with different substitutions were evaluated for inhibition of nuclear factor-κB (NF-κB) signaling in the invasive breast cancer cell line MDA-MB-231. They were screened using an engineered MDA-MB-231 cell line reporting NF-κB activation. The modulation of expression of two NF-κB regulated genes involved in tumorigenesis, matrix metalloproteinase-9 (MMP-9), and cyclooxygenase-2 (COX-2) were also analyzed in these cells. Among the compounds tested, all except gossypetin and quercetagetin inhibited the activation of NF-κB, and the expression of MMP-9 and COX-2 to different degree. Methylated flavone, chrysoeriol (luteolin-3'-methylether), was found to be the most potent inhibitor of MMP-9 and COX-2 expressions. The effect of chrysoeriol on cell proliferation, cell cycle, apoptosis and metastasis was analyzed by established methods. Chrysoeriol caused cell cycle arrest at G2/M and inhibited migration and invasion of MDA-MB-231 cells. The structure-activity relations amongst the flavonoids as NF-κB signaling inhibitors was studied. The study indicates differences between the actions of various flavonoids on NF-κB activation and on the biological activities of breast cancer cells. Flavones in general, were more active than the corresponding flavonols.


Assuntos
Descoberta de Drogas , Flavonas/farmacologia , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavonas/síntese química , Flavonas/química , Humanos , Estrutura Molecular , NF-kappa B/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...