Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mar Drugs ; 21(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132936

RESUMO

The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.


Assuntos
Antozoários , Produtos Biológicos , Poríferos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Ecossistema , Florida
2.
J Med Invest ; 70(3.4): 403-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940524

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder associated with peroxisomal dysfunction. Patients with this rare disease accumulate very long-chain fatty acids (VLCFAs) in their bodies because of impairment of peroxisomal VLCFA ?-oxidation. Several clinical types of X-ALD, ranging from mild (axonopathy in the spinal cord) to severe (cerebral demyelination), are known. However, the molecular basis for this phenotypic variability remains largely unknown. In this study, we determined plasma ceramide (CER) profile using liquid chromatography-tandem mass spectrometry. We characterized the molecular species profile of CER in the plasma of patients with mild (adrenomyeloneuropathy;AMN) and severe (cerebral) X-ALD. Eleven X-ALD patients (five cerebral, five AMN, and one carrier) and 10 healthy volunteers participated in this study. Elevation of C26:0 CER was found to be a common feature regardless of the clinical types. The level of C26:1 CER was significantly higher in AMN but not in cerebral type, than that in healthy controls. The C26:1 CER level in the cerebral type was significantly lower than that in the AMN type. These results suggest that a high level of C26:0 CER, along with a control level of C26:1 CER, is a characteristic feature of the cerebral type X-ALD. J. Med. Invest. 70 : 403-410, August, 2023.


Assuntos
Adrenoleucodistrofia , Ceramidas , Humanos , Adrenoleucodistrofia/genética , Ceramidas/sangue
3.
Front Oncol ; 13: 1048419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139155

RESUMO

Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.

4.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355554

RESUMO

One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.

5.
Sci Rep ; 11(1): 6270, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737539

RESUMO

Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the "top" proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Tubas Uterinas/efeitos dos fármacos , Tubas Uterinas/metabolismo , Compostos Férricos/farmacologia , Loci Gênicos , MicroRNAs/genética , Proteoma/genética , Compostos de Amônio Quaternário/farmacologia , Transcriptoma/efeitos dos fármacos , Azacitidina/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Regulação para Baixo/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Proteômica/métodos , Transfecção , Vorinostat/farmacologia
6.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992923

RESUMO

Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32615533

RESUMO

Glycosylinositol phosphoceramide (GIPC) is a sphingophospholipid in plants. Recently, we identified that GIPC is hydrolyzed to phytoceramide 1-phosphate (PC1P) by an uncharacterized phospholipase D activity following homogenization of certain plant tissues. We now developed methods for isolation of GIPC and PC1P from plant tissues and characterized their chemical stabilities. Hydrophilic solvents, namely a lower layer of a mixed solvent system consisting of isopropanol/hexane/water (55:20:25, v/v/v) was efficient solvent for extraction and eluent in column chromatography. GIPC was isolated by Sephadex column chromatography followed by TLC. A conventional method, such as the Bligh and Dyer method, was applicable for PC1P extraction. Specifically, PC1P was isolated by TLC following mild alkali treatment of lipid extracts of plants. The yields of GIPC and PC1P in our methods were both around 50-70%. We found that PC1P is tolerant against heat (up to 125 °C), strong acid (up to 10 M HCl), and mild alkali (0.1 M KOH). In contrast, significant degradation of GIPC occurred at 100 °C and 1.0 M HCl treatment, suggesting the instability of the inositol glycan moiety in these conditions. These data will be useful for further biochemical and nutritional studies on these sphingolipids.


Assuntos
Ceramidas/isolamento & purificação , Glicoesfingolipídeos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Ceramidas/análise , Ceramidas/química , Cromatografia em Camada Fina , Estabilidade de Medicamentos , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Inositol/análogos & derivados , Inositol/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Polissacarídeos/química , Solventes
8.
PLoS One ; 15(6): e0233887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492043

RESUMO

Increased cytoplasmic lipid droplets (LDs) and elevated AKT/mTOR signaling are characteristics of clear cell renal cell carcinoma (ccRCC). Lysophosphatidic acid (LPA), a potent lipid mitogen generated via autotaxin (elevated in ccRCC), can modulate tumor progression but its role in altering chemotherapeutic sensitivity to mTOR inhibitors is unclear and thus is the focus of the studies presented herein. Using malignant (A-498, 769-P and 786-O) and normal immortalized kidney (HK-2) cell lines, we investigated their cellular responsiveness to Temsirolimus (TEMS, mTOR inhibitor) in the absence or presence of LPA by monitoring alterations in AKT/mTOR pathway mediators (via western blotting), LDs (using LipidTOX and real-time PCR to assess transcript changes in modulators of LD biogenesis/turnover), mitochondrial networks (via immunofluorescence staining for TOM20 and TOM70), as well as cellular viability. We identified that TEMS reduced cellular viability in all renal cell lines, with increased sensitivity in the presence of an autophagy inhibitor. TEMS also altered activation of AKT/mTOR pathway mediators, abundance of LDs, and fragmentation of mitochondrial networks. We observed that these effects were antagonized by LPA. In HK-2 cells, LPA markedly increased LD size and abundance, coinciding with phospho-MAPK and phospho-S6 activation, increased diacylglycerol O-acetyltransferase 2 (DGAT2) mRNA (which produces triacylglycerides), and survival. Inhibiting MAPK partially antagonized LPA-induced LD changes. Collectively, we have identified that LPA can reverse the effects of TEMS by increasing LDs in a MAPK-dependent manner; these results suggest that LPA may contribute to the pathogenesis and chemotherapeutic resistance of ccRCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Lisofosfolipídeos/metabolismo , Sirolimo/análogos & derivados , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Neoplasias Renais/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
9.
Oncogenesis ; 8(9): 46, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434871

RESUMO

Mechanisms underlying the pathogenesis of high-grade serous epithelial ovarian cancers (HGSOC) are not yet well defined although key precursor cells have been identified (including fimbriated fallopian tube epithelium, FTSECs). Since iron is elevated in endometriotic cysts and the pelvic cavity, it is suggested that this source of redox-active iron may contribute to ovarian cancer pathogenesis. Specifically, sources of nontransferrin-bound iron (NTBI) within the pelvic cavity could arise from ovulation, retrograde menstruation, follicular fluid, or iron overload conditions (i.e., hemochromatosis). Herein, we investigated the cellular response of p53-inactivated and telomerase-expressing (immortalized) FTSECs (Pax8+/FoxJ1-) to NTBI (presented as ferric ammonium citrate (FAC), supplemented in media for >2 months) in order to assess its ability to promote the transition to a tumor-like phenotype; this cellular response was compared with immortalized FTSECs transformed with H-RasV12A and c-MycT58A. Both approaches resulted in increased cell numbers and expression of the oncogenic transcriptional regulator, ecotropic virus integration site 1 (EVI1, a gene most frequently amplified at 3q26.2 in HGSOC, represented by multiple variants), along with other oncogenic gene products. In contrast to the transformed cells, FAC-exposed FTSECs elicited elevated migratory capacity (and epithelial-mesenchymal transition mRNA profile) along with increased expression of DNA damage response proteins (i.e., FANCD2) and hTERT mRNA relative to controls. Interestingly, in FAC-exposed FTSECs, EVI1 siRNA attenuated hTERT mRNA expression, whereas siRNAs targeting ß-catenin and BMI1 (both elevated with chronic iron exposure) reduced Myc and Cyclin D1 proteins. Collectively, our novel findings provide strong foundational evidence for potential iron-induced initiation events, including EVI1 alterations, in the pathogenesis of HGSOC, warranting further in depth investigations. Thus, these findings will substantially advance our understanding of the contribution of iron enriched within the pelvic cavity, which may identify patients at risk of developing this deadly disease.

10.
Pharmaceuticals (Basel) ; 11(4)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360386

RESUMO

Maintenance of iron homeostasis is critical to cellular health as both its excess and insufficiency are detrimental. Likewise, lipids, which are essential components of cellular membranes and signaling mediators, must also be tightly regulated to hinder disease progression. Recent research, using a myriad of model organisms, as well as data from clinical studies, has revealed links between these two metabolic pathways, but the mechanisms behind these interactions and the role these have in the progression of human diseases remains unclear. In this review, we summarize literature describing cross-talk between iron and lipid pathways, including alterations in cholesterol, sphingolipid, and lipid droplet metabolism in response to changes in iron levels. We discuss human diseases correlating with both iron and lipid alterations, including neurodegenerative disorders, and the available evidence regarding the potential mechanisms underlying how iron may promote disease pathogenesis. Finally, we review research regarding iron reduction techniques and their therapeutic potential in treating patients with these debilitating conditions. We propose that iron-mediated alterations in lipid metabolic pathways are involved in the progression of these diseases, but further research is direly needed to elucidate the mechanisms involved.

11.
Proteomics ; 18(23): e1800244, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267477

RESUMO

Although iron is essential for cell survival, dysregulated levels can contribute to cancer development or even cell death. The underlying mechanisms mediating these events remain unclear. Herein, proteomic alterations are assessed in iron-treated ovarian cell lines using reverse phase protein array (RPPA) technology and potential functional responses via ingenuity pathway analysis (IPA). Using these approaches, upregulation of pathways modulating organismal death with alterations in mTOR, MAPK, and AKT signaling in HEY ovarian cancer cells in contrast to T80 non-malignant ovarian cells is noted. Since modulation of cell death is mediated in part via microphthalmia-associated transcription factor (MiTF) family, which regulates lysosomal biogenesis and autophagosome formation by upregulating expression of coordinated lysosomal expression and regulation (CLEAR) network, expression changes in these factors in response to iron are investigated. Increased transcription factor EB (TFEB) in T80 (relative to HEY), accompanied by its nuclear translocation and increased CLEAR network gene expression with iron, is identified. Inhibition of AKT alters these responses in contrast to mTOR inhibition, which has little effect. Collectively, these findings support use of RPPA/IPA technology to predict functional responses to iron and further implicate AKT pathway and MiTF members in iron-induced cellular responses in ovarian cells.


Assuntos
Ferro/farmacologia , Neoplasias Ovarianas/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Lisossomos/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Oncotarget ; 9(4): 5344-5367, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435183

RESUMO

Iron is proposed to contribute to the transition from endometriosis to specific subtypes of ovarian cancers (OVCAs). Regulation of intracellular iron occurs via a ferritinophagic process involving NCOA4 (Nuclear Receptor Coactivator 4), represented by two major isoforms (NCOA4α and NCOA4ß), whose contribution to ovarian cancer biology remains uninvestigated. We thus generated transformed endometriotic cells (via HRASV12A, c-MYCT58A, and p53 inactivation) whose migratory potential was increased in response to conditioned media from senescent endometriotic cells. We identified elevated NCOA4 mRNA in transformed endometriotic cells (relative to non-transformed). Knockdown of NCOA4 increased ferritin heavy chain (FTH1) and p21 protein which was accompanied by reduced cell survival while NCOA4ß overexpression reduced colony formation. NCOA4α and NCOA4ß mRNA were elevated in malignant versus non-malignant gynecological cells; NCOA4α protein was increased in the assessed malignant cell lines as well as in a series of OVCA subtypes (relative to normal adjacent tissues). Further, NCOA4 protein expression was regulated in a proteasome- and autophagy-independent manner. Collectively, our results implicate NCOA4 in ovarian cancer biology in which it could be involved in the transition from precursors to OVCA.

13.
Biol Chem ; 398(9): 995-1007, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28095368

RESUMO

Iron is an essential element required for many processes within the cell. Dysregulation in iron homeostasis due to iron overload is detrimental. This nutrient is postulated to contribute to the initiation of cancer; however, the mechanisms by which this occurs remain unclear. Defining how iron promotes the development of ovarian cancers from precursor lesions is essential for developing novel therapeutic strategies. In this review, we discuss (1) how iron overload conditions may initiate ovarian cancer development, (2) dysregulated iron metabolism in cancers, (3) the interplay between bacteria, iron, and cancer, and (4) chemotherapeutic strategies targeting iron metabolism in cancer patients.


Assuntos
Sobrecarga de Ferro/complicações , Ferro/metabolismo , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/metabolismo , Animais , Bactérias/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/microbiologia , Estresse Oxidativo
14.
BMC Cancer ; 16: 33, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26794413

RESUMO

BACKGROUND: miRNAs can regulate cellular survival in various cancer cell types. Recent evidence implicates the formation of lipid droplets as a hallmark event during apoptotic cell death response. It is presently unknown whether MIR494, located at 14q32 which is deleted in renal cancers, reduces cell survival in renal cancer cells and if this process is accompanied by changes in the number of lipid droplets. METHODS: 769-P renal carcinoma cells were utilized for this study. Control or MIR494 mimic was expressed in these cells following which cell viability (via crystal violet) and apoptotic cell numbers (via Annexin V/PI staining) were assessed. By western blotting, MIR494 cellular responses were validated using MIR494 antagomir and Argonaute 2 siRNA. Transmission electron microscopy (TEM) was performed in MIR494-transfected 769-P cells to identify ultrastructural changes. LipidTOX green neutral lipid staining and cholesterol measurements were conducted to assess accumulation of lipids droplets and total cholesterol levels, respectively, in MIR494 expressing 769-P cells. Indirect immunofluorescence and western analyses were also performed to examine changes in mitochondria organization. Co-transfection of MIR494 mimic with siRNA targeting LC3B and ATG7 was conducted to assess their contribution to formation of lipid droplets in MIR494-expressing cells. RESULTS: MIR494 expression reduces viability of 769-P renal cancer cells; this was accompanied by increased cleaved PARP (an apoptotic marker) and LC3B protein. Further, expression of MIR494 increased LC3B mRNA levels and LC3B promoter activity (2.01-fold; 50% increase). Interestingly, expression of MIR494 markedly increased multilamellar bodies and lipid droplets (by TEM and validated by LipidTOX immunostaining) while reducing total cholesterol levels. Via immunocytochemistry, we observed increased LC3B-associated endogenous punctae upon MIR494 expression. In contrast to ATG7 siRNA, knockdown of LC3B reduced the numbers of lipid droplets in MIR494-expressing cells. Our results also identified that MIR494 expression altered the organization of mitochondria which was accompanied by co-localization with LC3B punctae, decreased PINK1 protein, and altered Drp1 intracellular distribution. CONCLUSION: Collectively, our findings indicate that MIR494 reduces cell survival in 769-P renal cancer cells which is accompanied by increased lipid droplet formation (which occurs in a LC3B-dependent manner) and mitochondrial changes.


Assuntos
Neoplasias Renais/genética , Gotículas Lipídicas/metabolismo , MicroRNAs/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Gotículas Lipídicas/patologia , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
15.
PLoS One ; 10(2): e0117464, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658875

RESUMO

Toll-like receptors (TLRs) are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA). TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs)). Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs). Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126) did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA) significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid) suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma) cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.


Assuntos
Vetores Genéticos/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Vetores Genéticos/genética , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/genética , Interferons/genética , Interferons/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ovário/citologia , Proteínas de Transferência de Fosfolipídeos/genética , Fosforilação , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Transfecção
16.
Biochem J ; 466(2): 401-13, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25697096

RESUMO

The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Compostos Férricos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Ovário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Aconitato Hidratase/antagonistas & inibidores , Aconitato Hidratase/metabolismo , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Carcinoma/metabolismo , Carcinoma/ultraestrutura , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Compostos Férricos/antagonistas & inibidores , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/ultraestrutura , Ovário/metabolismo , Ovário/ultraestrutura , Compostos de Amônio Quaternário/antagonistas & inibidores , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
17.
FEBS Lett ; 589(1): 3-14, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25479087

RESUMO

Phospholipid scramblase activity is involved in the collapse of phospholipid (PL) asymmetry at the plasma membrane leading to externalization of phosphatidylserine. This activity is crucial for initiation of the blood coagulation cascade and for recognition/elimination of apoptotic cells by macrophages. Efforts to identify gene products associated with this activity led to the characterization of PL scramblase (PLSCR) and XKR family members which contribute to phosphatidylserine exposure in response to apoptotic stimuli. Meanwhile, TMEM16 family members were identified to externalize phosphatidylserine in response to elevated calcium in Scott syndrome platelets, which is critical for activation of the coagulation cascade. Herein, we report their mechanisms of gene regulation, molecular functions independent of their scrambling activity, and their potential roles in pathogenic conditions.


Assuntos
Apoptose , Transtornos da Coagulação Sanguínea/enzimologia , Plaquetas/enzimologia , Membrana Celular/enzimologia , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/patologia , Plaquetas/patologia , Membrana Celular/genética , Membrana Celular/patologia , Humanos , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética
18.
Analyst ; 138(13): 3728-34, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23689543

RESUMO

This paper reports the design and evaluation of a multi-electrode design that improves upon the statistical significance and spatial resolution of cellular impedance data measured using commercial electric cell-substrate impedance sensing (ECIS) systems. By evaluating cellular impedance using eight independent sensing electrodes, position-dependent impedance measurements can be recorded across the device and compare commonly used equivalent circuit and mathematical models for extraction of cell parameters. Data from the 8-electrode device was compared to data taken from commercial electric cell-substrate impedance sensing (ECIS) system by deriving a relationship between equivalent circuit and mathematically modelled parameters. The impedance systems were evaluated and compared by investigating the effects of arsenic trioxide (As2O3), a well-established chemotherapeutic agent, on ovarian cancer cells. Impedance spectroscopy, a non-destructive, label-free technique, was used to continuously measure the frequency-dependent cellular properties, without adversely affecting the cells. The importance of multiple measurements within a cell culture was demonstrated; and the data illustrated that the non-uniform response of cells within a culture required redundant measurements in order to obtain statistically significant data, especially for drug discovery applications. Also, a correlation between equivalent circuit modelling and mathematically modelled parameters was derived, allowing data to be compared across different modelling techniques.


Assuntos
Espectroscopia Dielétrica/instrumentação , Linhagem Celular Tumoral , Eletrodos , Desenho de Equipamento , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes
19.
Mol Cancer ; 12: 32, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23621864

RESUMO

BACKGROUND: Treatment of advanced stage ovarian cancer continues to be challenging due to acquired drug resistance and lack of early stage biomarkers. Genes identified to be aberrantly expressed at the 3q26.2 locus (i.e. SnoN/SkiL) have been implicated in ovarian cancer pathophysiology. We have previously shown that SnoN expression is increased in advanced stage ovarian cancers and alters cellular response to arsenic trioxide (As2O3). FINDINGS: We now demonstrate increased DNA copy number levels (TCGA data) of phospholipid scramblase 1 (PLSCR1, located at 3q23) whose transcript expression in ovarian cell lines is highly correlated with SnoN mRNA. Interestingly, SnoN can modulate PLSCR1 mRNA levels in the absence/presence of interferon (IFN-2α). Both IFN-2α and As2O3 treatment can modulate PLSCR1 mRNA levels in ovarian carcinoma cells. However, SnoN siRNA does not lead to altered PLSCR1 protein implicating other events needed to modulate its protein levels. In addition, we report that PLSCR1 can modulate aspects of the As2O3 cellular response. CONCLUSIONS: Our findings warrant further investigation into the role of PLSCR1 in ovarian cancer development and chemoresistance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Ovarianas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Proto-Oncogênicas/genética , Trióxido de Arsênio , Arsenicais/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 3 , Feminino , Dosagem de Genes , Técnicas de Silenciamento de Genes , Humanos , Interferon-alfa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Ovarianas/metabolismo , Óxidos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Mensageiro/genética
20.
Mol Oncol ; 7(3): 647-68, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23517670

RESUMO

Amplification of 3q26.2, found in many cancer lineages, is a frequent and early event in ovarian cancer. We previously defined the most frequent region of copy number increase at 3q26.2 to EVI1 (ecotropic viral integration site-1) and MDS1 (myelodysplastic syndrome 1) (aka MECOM), an observation recently confirmed by the cancer genome atlas (TCGA). MECOM is increased at the DNA, RNA, and protein level and likely contributes to patient outcome. Herein, we report that EVI1 is aberrantly spliced, generating multiple variants including a Del(190-515) variant (equivalent to previously reported) expressed in >90% of advanced stage serous epithelial ovarian cancers. Although EVI1(Del190-515) lacks ∼70% of exon 7, it binds CtBP1 as well as SMAD3, important mediators of TGFß signaling, similar to wild type EVI1. This contrasts with EVI1 1-268 which failed to interact with CtBP1. Interestingly, the EVI1(Del190-515) splice variant preferentially localizes to PML nuclear bodies compared to wild type and EVI1(Del427-515). While wild type EVI1 efficiently repressed TGFß-mediated AP-1 (activator protein-1) and plasminogen activator inhibitor-1 (PAI-1) promoters, EVI1(Del190-515) elicited a slight increase in both promoter activities. Expression of EVI1 and EVI1(Del427-515) (but not EVI1(Del190-515)) in OVCAR8 ovarian cancer cells increased cyclin E1 LMW expression and cell cycle progression. Furthermore, knockdown of specific EVI1 splice variants (both MDS1/EVI1 and EVI1(Del190-515)) markedly increased claudin-1 mRNA and protein expression in HEY ovarian and MDA-MB-231 breast cancer cells. Changes in claudin-1 were associated with alterations in specific epithelial-mesenchymal transition markers concurrent with reduced migratory potential. Collectively, EVI1 is frequently aberrantly spliced in ovarian cancer with specific forms eliciting altered functions which could potentially contribute to ovarian cancer pathophysiology.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/patologia , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Carcinoma Epitelial do Ovário , Ciclo Celular , Linhagem Celular Tumoral , Claudina-1/genética , Ciclina E/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Neoplasias Epiteliais e Glandulares/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...