Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 56, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317193

RESUMO

BACKGROUND: About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and ß4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS: H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS: H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and ß4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS: Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.

2.
Neurobiol Dis ; 175: 105932, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427690

RESUMO

Histamine, a monoamine implicated in stress-related arousal states, is synthesized in neurons exclusively located in the hypothalamic tuberomammillary nucleus (TMN) from where they diffusely innervate striatal and mesolimbic networks including the nucleus accumbens (NAc), a vital node in the limbic loop. Since histamine-containing TMN neuron output increases during stress, we hypothesized that exposure of mice to acute restrain stress (ARS) recruits endogenous histamine type 2 receptor (H2R) signaling in the NAc, whose activation increases medium spiny neurons (MSNs) intrinsic excitability via downregulation of A-type K+ currents. We employed an ARS paradigm in which mice were restrained for 120 min, followed by a 20-min recovery period, after which brain slices were prepared for ex vivo electrophysiology. Using whole-cell patch-clamp recordings, we found that pharmacological activation of H2R failed to affect MSN excitability and A-type K+ currents in mice that underwent ARS. Interestingly, in mice treated with H2R-antagonist prior to ARS paradigm, H2R activation increased evoked firing and decreased A-type K+ currents similarly to what observed in control mice. Furthermore, H2R-antagonist treatment ameliorated anxiety-like behavior in ARS mice. Together, our findings indicate that ARS paradigm recruits endogenous H2R signaling in MSNs and suggest the involvement of H2R signaling in stress-related motivational states.


Assuntos
Histamina , Núcleo Accumbens , Camundongos , Animais , Potenciais de Ação/fisiologia , Neurônios Espinhosos Médios , Técnicas de Patch-Clamp
3.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740569

RESUMO

BACKGROUND: Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). METHODS: We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. RESULTS: In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. CONCLUSIONS: These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.

4.
J Physiol ; 600(9): 2225-2243, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343587

RESUMO

Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, from where they project to many brain areas including the nucleus accumbens (NAc), a brain area that integrates diverse monoaminergic inputs to coordinate motivated behaviours. While the NAc expresses various histamine receptor subtypes, the mechanisms by which histamine modulates NAc activity are still poorly understood. Using whole-cell patch-clamp recordings, we found that pharmacological activation of histamine 2 (H2) receptors elevates the excitability of NAc medium spiny neurons (MSNs), while activation of H1 receptors failed to significantly affect MSN excitability. The evoked firing of MSNs increased after seconds of local H2 agonist administration and remained elevated for minutes. H2 receptor (H2R) activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential afterhyperpolarization and increased the action potential half-width. The increased excitability was protein kinase A-dependent and associated with decreased A-type K+ currents. In addition, selective pharmacological inhibition of the Kv4.2 channel, the main molecular determinant of A-type K+ currents in MSNs, mimicked and occluded the increased excitability induced by H2R activation. Our results indicate that histaminergic transmission in the NAc increases MSN intrinsic excitability through H2R-dependent modulation of Kv4.2 channels. Activation of H2R will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of goal-induced behaviours. KEY POINTS: Histamine is synthesized and released by hypothalamic neurons of the tuberomammillary nucleus and serves as a general modulator for whole-brain activity including the nucleus accumbens. Histamine receptors type 2 (HR2), which are expressed in the nucleus accumbens, couple to Gαs/off proteins which elevate cyclic adenosine monophosphate levels and activate protein kinase A. Whole-cell patch-clamp recordings revealed that H2R activation increased the evoked firing in medium spiny neurons of the nucleus accumbens via protein kinase A-dependent mechanisms. HR2 activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential medium after-hyperpolarization and increased the action potential half-width. HR2 activation also reduced A-type potassium current. Selective pharmacological inhibition of the Kv4.2 channel mimicked and occluded the increased excitability induced by H2R activation.


Assuntos
Histamina , Núcleo Accumbens , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histamina/farmacologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores Histamínicos H2
5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200325

RESUMO

The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).


Assuntos
Envelhecimento/genética , COVID-19/genética , COVID-19/fisiopatologia , Ilhas de CpG , Encurtamento do Telômero , Telômero/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/sangue , Biomarcadores , COVID-19/complicações , COVID-19/etiologia , Metilação de DNA , Dipeptidil Peptidase 4/sangue , Epigenômica , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sobreviventes , Síndrome de COVID-19 Pós-Aguda
6.
Cell Death Dis ; 12(7): 636, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155195

RESUMO

Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-ß5, Survivin, TGF-ß, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/sangue , Neoplasias da Próstata/sangue , Proteoma , Proteômica , Adulto , Idoso , Linhagem Celular Tumoral , Vesículas Extracelulares/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Neoplasias da Próstata/ultraestrutura , Análise Serial de Proteínas , Reprodutibilidade dos Testes , Estudos Retrospectivos
7.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375130

RESUMO

The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes growth and progression in prostate cancer (PCa); however, little is known about its possible impact in PCa metabolism. The aim of this work has been the assessment of the metabolic reprogramming associated with MALAT1 silencing in human PCa cells and in an ex vivo model of organotypic slice cultures (OSCs). Cultured cells and OSCs derived from primary tumors were transfected with MALAT1 specific gapmers. Cell growth and survival, gene profiling, and evaluation of targeted metabolites and metabolic enzymes were assessed. Computational analysis was made considering expression changes occurring in metabolic markers following MALAT1 targeting in cultured OSCs. MALAT1 silencing reduced expression of some metabolic enzymes, including malic enzyme 3, pyruvate dehydrogenase kinases 1 and 3, and choline kinase A. Consequently, PCa metabolism switched toward a glycolytic phenotype characterized by increased lactate production paralleled by growth arrest and cell death. Conversely, the function of mitochondrial succinate dehydrogenase and the expression of oxidative phosphorylation enzymes were markedly reduced. A similar effect was observed in OSCs. Based on this, a predictive algorithm was developed aimed to predict tumor recurrence in a subset of patients. MALAT1 targeting by gapmer delivery restored normal metabolic energy pathway in PCa cells and OSCs.

8.
Oncotarget ; 11(45): 4155-4168, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33227047

RESUMO

TWIST1 is a basic helix-loop-helix transcription factor, and one of the master Epithelial-to-Mesenchymal Transition (EMT) regulators. We show that tumor suppressor miR-145-5p controls TWIST1 expression in an immortalized prostate epithelial cell line and in a tumorigenic prostate cancer-derived cell line. Indeed, shRNA-mediated miR-145-5p silencing enhanced TWIST1 expression and induced EMT-associated malignant properties in these cells. However, we discovered that the translational inhibitory effect of miR-145-5p on TWIST1 is lost in 22Rv1, another prostate cancer cell line that intrinsically expresses high levels of the CPEB1 cytoplasmic polyadenylation element binding protein. This translational regulator typically reduces TWIST1 translation efficiency by shortening the TWIST1 mRNA polyA tail. However, our results indicate that the presence of CPEB1 also interferes with the binding of miR-145-5p to the TWIST1 mRNA 3'UTR. Mechanistically, CPEB1 binding to its first cognate site either directly hampers the access to the miR-145-5p response element or redirects the cleavage/polyadenylation machinery to an intermediate polyadenylation site, resulting in the elimination of the miR-145-5p binding site. Taken together, our data support the notion that the tumor suppressive activity of miR-145-5p on TWIST1 translation, consequently on EMT, self-renewal, and migration, depends on the CPEB1 expression status of the cancer cell. A preliminary prospective study using clinical samples suggests that reconsidering the relative status of miR-145-5p/TWIST1 and CPEB1 in the tumors of prostate cancer patients may bear prognostic value.

9.
Mol Cell Endocrinol ; 511: 110864, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413384

RESUMO

Prostate cancer (PCa) is a sex-steroid hormone-dependent cancer in which estrogens play a critical role in both initiation and progression. Recently, several long non-coding RNAs (lncRNAs) have been associated with PCa and are supposedly playing a pivotal role in the biology and progression of this type of cancer. In this review, we focused on some lncRNAs that are known for their androgen and estrogen transcriptional responsiveness in PCa. Specifically, we summarized recent pieces of evidence about lncRNAs NEAT1, H19, MALAT1, and HOTAIR, in estrogen signaling, emphasizing their role in PCa progression and the acquisition of a castration-resistant phenotype. Here, the reader will find information about lncRNAs present in estrogen-dependent transcriptional complexes. The potential role of lncRNA/estrogen signaling as a novel pathway for PCa treatment will be discussed.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Animais , Humanos , Masculino , Modelos Biológicos , Neoplasias da Próstata/tratamento farmacológico , RNA Longo não Codificante/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico
10.
Health Technol (Berl) ; 10(5): 1207-1220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32406425

RESUMO

Patient safety is a great concern of healthcare institutions and the correct reporting and management of adverse events is a key element for supporting safety improvement efforts. Patient falls are the most frequent adverse event in hospitals and often cause serious patient outcomes. In this work, we describe the experience of the Local Healthcare Authority of Romagna, Italy that, within the framework of a quality and safety improvement programme, designed, developed and implemented a desktop application for monitoring inpatient falls. A multidisciplinary team created a software tool based on R, an open source software for statistical computing that, appropriately combined with the existing hospital information system, is used to obtain Shewhart u-control charts for monitoring the monthly fall rates. The tool had been implemented in twenty nine hospital units. The results indicate that the proposed application gave a valuable contribution in the safety improvement activities. Its usefulness extended beyond the "safety problem" as it also enabled hospital managers to identify a number of critical issues in data collection. As a result, where necessary, improvement actions had been implemented. Furthermore, the use of open source software led to a considerable cost reduction and facilitated customization of the software tool.

11.
Sci Rep ; 9(1): 15925, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685892

RESUMO

Protein Arginine (R) methylation is the most common post-translational methylation in mammalian cells. Protein Arginine Methyltransferases (PRMT) 1 and 5 dimethylate their substrates on R residues, asymmetrically and symmetrically, respectively. They are ubiquitously expressed and play fundamental roles in tumour malignancies, including glioblastoma multiforme (GBM) which presents largely deregulated Myc activity. Previously, we demonstrated that PRMT5 associates with Myc in GBM cells, modulating, at least in part, its transcriptional properties. Here we show that Myc/PRMT5 protein complex includes PRMT1, in both HEK293T and glioblastoma stem cells (GSCs). We demonstrate that Myc is both asymmetrically and symmetrically dimethylated by PRMT1 and PRMT5, respectively, and that these modifications differentially regulate its stability. Moreover, we show that the ratio between symmetrically and asymmetrically dimethylated Myc changes in GSCs grown in stem versus differentiating conditions. Finally, both PRMT1 and PRMT5 activity modulate Myc binding at its specific target promoters. To our knowledge, this is the first work reporting R asymmetrical and symmetrical dimethylation as novel Myc post-translational modifications, with different functional properties. This opens a completely unexplored field of investigation in Myc biology and suggests symmetrically dimethylated Myc species as novel diagnostic and prognostic markers and druggable therapeutic targets for GBM.


Assuntos
Células-Tronco Neoplásicas/enzimologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Anticorpos/imunologia , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Glioblastoma , Células HEK293 , Humanos , Metilação , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426484

RESUMO

Estrogen and hypoxia promote an aggressive phenotype in prostate cancer (PCa), driving transcription of progression-associated genes. Here, we molecularly dissect the contribution of long non-coding RNA H19 to PCa metastatic potential under combined stimuli, a topic largely uncovered. The effects of estrogen and hypoxia on H19 and cell adhesion molecules' expression were investigated in PCa cells and PCa-derived organotypic slice cultures (OSCs) by qPCR and Western blot. The molecular mechanism was addressed by chromatin immunoprecipitations, overexpression, and silencing assays. PCa cells' metastatic potential was analyzed by in vitro cell-cell adhesion, motility test, and trans-well invasion assay. We found that combined treatment caused a significant H19 down-regulation as compared with hypoxia. In turn, H19 acts as a transcriptional repressor of cell adhesion molecules, as revealed by up-regulation of both ß3 and ß4 integrins and E-cadherin upon H19 silencing or combined treatment. Importantly, H19 down-regulation and ß integrins induction were also observed in treated OSCs. Combined treatment increased both cell motility and invasion of PCa cells. Lastly, reduction of ß integrins and invasion was achieved through epigenetic modulation of H19-dependent transcription. Our study revealed that estrogen and hypoxia transcriptionally regulate, via H19, cell adhesion molecules redirecting metastatic dissemination from EMT to a ß integrin-mediated invasion.


Assuntos
Regulação Neoplásica da Expressão Gênica , Integrina beta3/genética , Integrina beta4/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/metabolismo , Animais , Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estrogênios/farmacologia , Humanos , Hipóxia , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Ratos , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Oncotarget ; 9(46): 27985-27997, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963256

RESUMO

Nucleoporin 153 (Nup153), key regulator of nuclear import/export, has been recently associated to oncogenic properties in pancreatic and breast tumour cells modulating either cell motility and migration or gene expression by chromatin association. In the present work, we have characterized the role of Nup153 in a cellular model of prostate cancer (PCa). The analysis of several immortalized cell lines derived from freshly explants of prostate cancer specimens showed that Nup153 protein was higher and present in multimeric complexes with eNOS and ERß as compared to normal/hyperplastic prostate epithelial cells. This phenomenon was enhanced in the presence of 17ß-estradiol (E2, 10-7M). Further experiments revealed that eNOS and ERß were present in a DNA binding complexes associated with Nup153 promoter as demonstrated by ChIPs. Notably, after Nup153 depletion (siNup153), a reduction of migration capacity and colony formation in primary tumor-derived and metastatic PCa cells was observed. In addition, eNOS and ERß nuclear localization was lost upon siNup 153 regardless of E2 treatment, suggesting that Nup153 is a key regulator of prostate cancer cell function and of the nuclear translocation of these proteins in response to hormone stimulus. Taken altogether our findings indicate that in PCa cells: i. the expression and function of Nup153 is modulated by estrogen signaling; ii. Nup153 contributes to cell migration and proliferation; iii. Nup153 regulates the nuclear translocation of eNOS and ERß by forming a multimeric complex. Our findings unveil Nup153 as a novel component of the estrogen-dependent multimeric complex, thus representing a potential therapeutic candidate in prostate cancer.

15.
Endocrine ; 59(1): 102-108, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28447256

RESUMO

PURPOSE: The aim of this study was to generate immortalized human anterior pituitary adenoma cells. Reliable cell models for the study of human pituitary adenomas are as yet lacking and studies performed so far used repeated passaging of freshly excised adenomas, with the attendant limitations due to limited survival in culture, early senescence, and poor reproducibility. METHODS & RESULTS: We devised a technique based upon repeated co-transfections of two retroviral vectors, one carrying the catalytic subunit of human telomerase, hTERT, the other SV40 large T antigen. This approach extended the lifespan of cells derived from a human growth hormone-secreting adenoma up to 18 months while retaining morphology of primary cells, growth hormone synthesis and growth hormone secretion. CONCLUSIONS: Our attempt represents the first demonstration of successful lifespan extension of human growth hormone-secreting pituitary adenoma cells via co-transfection of hTERT and SV40T and paves the way to future attempts to obtain stable cell lines.


Assuntos
Adenoma/patologia , Proliferação de Células , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Cultura Primária de Células/métodos , Adenoma/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Senescência Celular/fisiologia , Técnicas de Transferência de Genes , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Telomerase/genética , Fatores de Tempo , Células Tumorais Cultivadas
16.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158345

RESUMO

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
17.
Endocrinology ; 158(7): 2391-2405, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368536

RESUMO

This study aims at investigating the epigenetic landscape of cardiomyocytes exposed to elevated glucose levels. High glucose (30 mM) for 72 hours determined some epigenetic changes in mouse HL-1 and rat differentiated H9C2 cardiomyocytes including upregulation of class I and III histone deacetylase protein levels and activity, inhibition of histone acetylase p300 activity, increase in histone H3 lysine 27 trimethylation, and reduction in H3 lysine 9 acetylation. Gene expression analysis focused on cardiotoxicity revealed that high glucose induced markers associated with tissue damage, fibrosis, and cardiac remodeling such as Nexilin (NEXN), versican, cyclic adenosine 5'-monophosphate-responsive element modulator (CREM), and adrenoceptor α2A (ADRA2). Notably, the transcription factor CREM was found to be important in the regulation of cardiotoxicity-associated genes as assessed by specific small interfering RNA and chromatin immunoprecipitation experiments. In CD1 mice, made hyperglycemic by streptozotoicin (STZ) injection, cardiac structural alterations were evident at 6 months after STZ treatment and were associated with a significant increase of H3 lysine 27 trimethylation and reduction of H3 lysine 9 acetylation. Consistently, NEXN, CREM, and ADRA2 expression was significantly induced at the RNA and protein levels. Confocal microscopy analysis of NEXN localization showed this protein irregularly distributed along the sarcomeres in the heart of hyperglycemic mice. This evidence suggested a structural alteration of cardiac Z-disk with potential consequences on contractility. In conclusion, high glucose may alter the epigenetic landscape of cardiac cells. Sildenafil, restoring guanosine 3', 5'-cyclic monophosphate levels, counteracted the increase of CREM and NEXN, providing a protective effect in the presence of hyperglycemia.


Assuntos
Cardiotoxicidade/genética , Modulador de Elemento de Resposta do AMP Cíclico/fisiologia , Glucose/efeitos adversos , Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Miócitos Cardíacos/metabolismo , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Células Cultivadas , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Epigênese Genética/efeitos dos fármacos , Feminino , Hiperglicemia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Fatores de Tempo
18.
Sci Rep ; 6: 38414, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922078

RESUMO

In the complex network of nuclear hormone receptors, the long non-coding RNAs (lncRNAs) are emerging as critical determinants of hormone action. Here we investigated the involvement of selected cancer-associated lncRNAs in Estrogen Receptor (ER) signaling. Prior studies by Chromatin Immunoprecipitation (ChIP) Sequencing showed that in prostate cancer cells ERs form a complex with the endothelial nitric oxide synthase (eNOS) and that in turn these complexes associate with chromatin in an estrogen-dependent fashion. Among these associations (peaks) we focused our attention on those proximal to the regulatory region of HOTAIR and MALAT1. These transcripts appeared regulated by estrogens and able to control ERs function by interacting with ERα/ERß as indicated by RNA-ChIP. Further studies performed by ChIRP revealed that in unstimulated condition, HOTAIR and MALAT1 were present on pS2, hTERT and HOTAIR promoters at the ERE/eNOS peaks. Interestingly, upon treatment with17ß-estradiol HOTAIR recruitment to chromatin increased significantly while that of MALAT1 was reduced, suggesting an opposite regulation and function for these lncRNAs. Similar results were obtained in cells and in an ex vivo prostate organotypic slice cultures. Overall, our data provide evidence of a crosstalk between lncRNAs, estrogens and estrogen receptors in prostate cancer with important consequences on gene expression regulation.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Microtomia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Oligorribonucleotídeos Antissenso/genética , Oligorribonucleotídeos Antissenso/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Prostatectomia/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Telomerase/genética , Telomerase/metabolismo , Técnicas de Cultura de Tecidos
19.
Cardiovasc Res ; 112(2): 555-567, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28513807

RESUMO

AIMS: Beyond the control of nuclear-cytoplasmic trafficking nucleoporins regulate gene expression and are involved in cardiac diseases. Notably, a number of cardiovascular disorders have been linked to alterations in epigenetic mechanisms. Here we aimed to determine the contribution of Nup153 to the epigenetic alterations occurring in cardiomyopathy of dystrophin-deficient mdx mice (C57BL/10ScSn-Dmd mdx /J). METHODS AND RESULTS: Nup153 was lysine-acetylated and its expression was significantly increased at protein level in mdx hearts compared with controls. Accordingly, lysine acetyl transferase (KAT) activity associated with Nup153 was higher in mdx hearts paralleling increased binding with the lysine acetylases P300/CBP-associated factor (PCAF) and p300. Interestingly, Nup153 silencing in mdx organotypic heart tissue slices caused a reduction in PCAF- and p300-specific activities. Remarkably, the level of nitric oxide (NO), which is reduced in mdx mice, was important for KAT-dependent regulation of Nup153. In fact, treatment of mdx heart tissue with an NO donor or the KAT inhibitor anacardic acid normalized Nup153 protein expression. Nup153 was recruited to chromatin and regulated the transcription of genes involved in cardiac remodelling, including the actin-binding protein nexilin. Accordingly, nexilin protein expression was abrogated by Nup153 silencing in mdx organotypic cultures. Electrophysiological and molecular experiments revealed that Nup153 overexpression in normal cardiomyocytes increases Ca v 1.2 calcium channel expression and function. Alterations in Nup153 protein expression and intracellular localization were also found in dystrophic cardiomyocytes derived from patient-specific induced pluripotent stem cells. Importantly, Nup153 up-regulation and increased acetylation were also found in the heart of Duchenne muscular dystrophy patients. CONCLUSIONS: Our data indicate that Nup153 is an epigenetic regulator which, upon altered NO signalling, mediates the activation of genes potentially associated with early dystrophic cardiac remodelling.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Acetilação , Animais , Canais de Cálcio/fisiologia , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Óxido Nítrico/metabolismo , Ratos , Remodelação Ventricular
20.
Endocrine ; 53(3): 681-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26547215

RESUMO

The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work, we compared the effect of thyroid hormone and that of anacardic acid, a naturally occurring histone acetylase inhibitor, or both in combination, on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation, we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them, a rapid induction of the transcription factor Castor 1 (CASZ1), important for cardiomyocytes differentiation and maturation during embryonic development, was observed in the presence of AA. In contrast, thyroid hormone (T 3) was more effective in stimulating spontaneous firing, thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion, AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.


Assuntos
Ácidos Anacárdicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Células-Tronco Embrionárias/citologia , Epigênese Genética , Camundongos , Miócitos Cardíacos/citologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...