Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
ACS Omega ; 8(46): 43500-43510, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027387

RESUMO

Angiotensin-converting enzyme inhibitors (ACEIs) play a crucial role in treating conditions such as hypertension, heart failure, and kidney diseases. Nevertheless, the ACEIs currently available on the market are linked to a variety of adverse effects including renal insufficiency, which restricts their usage. There is thus an urgent need to optimize the currently available ACEIs. This study represents a structure-activity relationship investigation of ACEIs, employing machine learning to analyze data sets sourced from the ChEMBL database. Exploratory data analysis was performed to visualize the physicochemical properties of compounds by investigating the distributions, patterns, and statistical significance among the different bioactivity groups. Further scaffold analysis has identified 9 representative Murcko scaffolds with frequencies ≥10. Scaffold diversity has revealed that active ACEIs had more scaffold diversity than their intermediate and inactive counterparts, thereby indicating the significance of performing lead optimization on scaffolds of active ACEIs. Scaffolds 1, 3, 6, and 8 are unfavorable in comparison with scaffolds 2, 3, 5, 7, and 9. QSAR investigation of compiled data sets consisting of 549 compounds led to the selection of Mordred descriptor and Random Forest algorithm as the best model, which afforded robust model performance (accuracy: 0.981, 0.77, and 0.745; MCC: 0.972, 0.658, and 0.617 for the training set, 10-fold cross-validation set, and testing set, respectively). To enhance the model's robustness and predictability, we reduced the chemical diversity of the input compounds by using the 9 most prevalent Murcko scaffold-matched compounds (comprising a total of 168) followed by a subsequent QSAR model investigation using Mordred descriptor and extremely gradient boost algorithm (accuracy: 0.973, 0.849, and 0.823; MCC: 0.959, 0.786, and 0.742 for the training set, 10-fold cross-validation set, and testing set, respectively). Further illustration of the structure-activity relationship using SALI plots has enabled the identification of clusters of compounds that create activity cliffs. These findings, as presented in this study, contribute to the advancement of drug discovery and the optimization of ACEIs.

2.
EXCLI J ; 22: 975-991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023567

RESUMO

Antimicrobial resistance (AMR) has emerged as one of the global threats to human health in the 21st century. Drug discovery of inhibitors against novel targets rather than conventional bacterial targets has been considered an inevitable strategy for the growing threat of AMR infections. In this study, we applied quantitative structure-activity relationship (QSAR) modeling to the LpxC inhibitors to predict the inhibitory activity. In addition, we performed various cheminformatics analysis consisting of the exploration of the chemical space, identification of chemotypes, performing structure-activity landscape and activity cliffs as well as construction of the Structure-Activity Similarity (SAS) map. We built a total of 24 QSAR classification models using PubChem and MACCS fingerprint with 12 various machine learning algorithms. The best model with PubChem fingerprint is the Extremely Gradient Boost model (accuracy on the training set: 0.937; accuracy on the 10-fold cross-validation set: 0.795; accuracy on the test set: 0.799). Furthermore, it was found that the best model using the MACCS fingerprint was the Random Forest model (accuracy on the training set: 0.955; accuracy on the 10-fold cross-validation set: 0.803; accuracy on the test set: 0.785). In addition, we have identified eight consensus activity cliff generators that are highly informative for further SAR investigations. It is hoped that findings presented herein can provide guidance for further lead optimization of LpxC inhibitors.

3.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838665

RESUMO

Cytochrome P450 17A1 (CYP17A1) is one of the key enzymes in steroidogenesis that produces dehydroepiandrosterone (DHEA) from cholesterol. Abnormal DHEA production may lead to the progression of severe diseases, such as prostatic and breast cancers. Thus, CYP17A1 is a druggable target for anti-cancer molecule development. In this study, cheminformatic analyses and quantitative structure-activity relationship (QSAR) modeling were applied on a set of 962 CYP17A1 inhibitors (i.e., consisting of 279 steroidal and 683 nonsteroidal inhibitors) compiled from the ChEMBL database. For steroidal inhibitors, a QSAR classification model built using the PubChem fingerprint along with the extra trees algorithm achieved the best performance, reflected by the accuracy values of 0.933, 0.818, and 0.833 for the training, cross-validation, and test sets, respectively. For nonsteroidal inhibitors, a systematic cheminformatic analysis was applied for exploring the chemical space, Murcko scaffolds, and structure-activity relationships (SARs) for visualizing distributions, patterns, and representative scaffolds for drug discoveries. Furthermore, seven total QSAR classification models were established based on the nonsteroidal scaffolds, and two activity cliff (AC) generators were identified. The best performing model out of these seven was model VIII, which is built upon the PubChem fingerprint along with the random forest algorithm. It achieved a robust accuracy across the training set, the cross-validation set, and the test set, i.e., 0.96, 0.92, and 0.913, respectively. It is anticipated that the results presented herein would be instrumental for further CYP17A1 inhibitor drug discovery efforts.


Assuntos
Quimioinformática , Inibidores Enzimáticos , Esteroide 17-alfa-Hidroxilase , Desidroepiandrosterona , Inibidores Enzimáticos/farmacologia , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Esteroides/química , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores
4.
ACS Omega ; 8(7): 6729-6742, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844574

RESUMO

Prostate cancer (PCa) is a major leading cause of mortality of cancer among males. There have been numerous studies to develop antagonists against androgen receptor (AR), a crucial therapeutic target for PCa. This study is a systematic cheminformatic analysis and machine learning modeling to study the chemical space, scaffolds, structure-activity relationship, and landscape of human AR antagonists. There are 1678 molecules as final data sets. Chemical space visualization by physicochemical property visualization has demonstrated that molecules from the potent/active class generally have a mildly smaller molecular weight (MW), octanol-water partition coefficient (log P), number of hydrogen-bond acceptors (nHA), number of rotatable bonds (nRot), and topological polar surface area (TPSA) than molecules from intermediate/inactive class. The chemical space visualization in the principal component analysis (PCA) plot shows significant overlapping distributions between potent/active class molecules and intermediate/inactive class molecules; potent/active class molecules are intensively distributed, while intermediate/inactive class molecules are widely and sparsely distributed. Murcko scaffold analysis has shown low scaffold diversity in general, and scaffold diversity of potent/active class molecules is even lower than intermediate/inactive class molecules, indicating the necessity for developing molecules with novel scaffolds. Furthermore, scaffold visualization has identified 16 representative Murcko scaffolds. Among them, scaffolds 1, 2, 3, 4, 7, 8, 10, 11, 15, and 16 are highly favorable scaffolds due to their high scaffold enrichment factor values. Based on scaffold analysis, their local structure-activity relationships (SARs) were investigated and summarized. In addition, the global SAR landscape was explored by quantitative structure-activity relationship (QSAR) modelings and structure-activity landscape visualization. A QSAR classification model incorporating all of the 1678 molecules stands out as the best model from a total of 12 candidate models for AR antagonists (built on PubChem fingerprint, extra trees algorithm, accuracy for training set: 0.935, 10-fold cross-validation set: 0.735 and test set: 0.756). Deeper insights into the structure-activity landscape highlighted a total of seven significant activity cliff (AC) generators (ChEMBL molecule IDs: 160257, 418198, 4082265, 348918, 390728, 4080698, and 6530), which provide valuable SAR information for medicinal chemistry. The findings in this study provide new insights and guidelines for hit identification and lead optimization for the development of novel AR antagonists.

5.
EXCLI J ; 22: 84-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814851

RESUMO

Cancer is the leading cause of death worldwide, resulting in the mortality of more than 10 million people in 2020, according to Global Cancer Statistics 2020. A potential cancer therapy involves targeting the DNA repair process by inhibiting PARP-1. In this study, classification models were constructed using a non-redundant set of 2018 PARP-1 inhibitors. Briefly, compounds were described by 12 fingerprint types and built using the random forest algorithm concomitant with various sampling approaches. Results indicated that PubChem with an oversampling approach yielded the best performance, with a Matthews correlation coefficient > 0.7 while also affording interpretable molecular features. Moreover, feature importance, as determined from the Gini index, revealed that the aromatic/cyclic/heterocyclic moiety, nitrogen-containing fingerprints, and the ether/aldehyde/alcohol moiety were important for PARP-1 inhibition. Finally, our predictive model was deployed as a web application called PARP1pred and is publicly available at https://parp1pred.streamlitapp.com, allowing users to predict the biological activity of query compounds using their SMILES notation as the input. It is anticipated that the model described herein will aid in the discovery of effective PARP-1 inhibitors.

6.
Surg Radiol Anat ; 45(2): 175-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36602583

RESUMO

PURPOSE: The uppermost segment of the cervical vertebra or atlas (C1) is a critically important anatomical structure, housing the medulla oblongata and containing the grooves for the C1 spinal nerve and the vertebral vessels. Variations of the C1 vertebra can affect upper spine stability, and morphometric parameters have been reported to differ by population. However, there are few data regarding these parameters in Thais. The use of this bone to predict sex and age has never been reported. METHODS: This study aimed to examine C1 morphometry and determine its ability to predict sex. Twelve diameter parameters were taken from the C1 vertebrae of identified skeletons (n = 104, males [n, 54], females [n, 50]). Correlation analysis was also performed for sex and age, which were predicted using machine learning algorithms. RESULTS: The results showed that 8 of the 12 measured parameters were significantly longer in the male atlas (p < 0.05), while the remaining 4 (distance between both medial-most edges of the transverse foramen, transverse dimension of the superior articular surface, frontal plane passing through the canal's midpoint, and anteroposterior dimension of the inferior articular surface) did not differ significantly by sex. There was no statistically significant difference in these parameters on the lateral side. The decision stump classifier was trained on C1 parameters, and the resulting model could predict sex with 82.6% accuracy (root mean square error = 0.38). CONCLUSION: Assertation of the morphometric parameters of the atlas is important for preoperative assessment, especially for the treatment of atlas dislocation. Our findings also highlighted the potential use of atlas measurements for sex prediction.


Assuntos
Atlas Cervical , Fusão Vertebral , Feminino , Humanos , Masculino , Atlas Cervical/diagnóstico por imagem , População do Sudeste Asiático , Tailândia , Vértebras Cervicais/diagnóstico por imagem , Fusão Vertebral/métodos
7.
Comput Biol Med ; 152: 106368, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481763

RESUMO

Despite the arsenal of existing cancer therapies, the ongoing recurrence and new cases of cancer pose a serious health concern that necessitates the development of new and effective treatments. Cancer immunotherapy, which uses the body's immune system to combat cancer, is a promising treatment option. As a result, in silico methods for identifying and characterizing tumor T cell antigens (TTCAs) would be useful for better understanding their functional mechanisms. Although few computational methods for TTCA identification have been developed, their lack of model interpretability is a major drawback. Thus, developing computational methods for the effective identification and characterization of TTCAs is a critical endeavor. PSRTTCA, a new machine learning (ML)-based approach for improving the identification and characterization of TTCAs based on their primary sequences, is proposed in this study. Specifically, we introduce a new propensity score representation learning algorithm that allows one to generate various sets of propensity scores of amino acids, dipeptides, and g-gap dipeptides to be TTCAs. To enhance the predictive performance, optimal sets of variant propensity scores were determined and fed into the final meta-predictor (PSRTTCA). Benchmarking results revealed that PSRTTCA was a more precise and promising tool for the identification and characterization of TTCAs than conventional ML classifiers and existing methods. Furthermore, PSR-derived propensities of amino acids in becoming TTCAs are used to reveal the relationship between TTCAs and their informative physicochemical properties in order to provide insights into TTCA characteristics. Finally, a user-friendly online computational platform of PSRTTCA is publicly available at http://pmlabstack.pythonanywhere.com/PSRTTCA. The PSRTTCA predictor is anticipated to facilitate community-wide efforts in accelerating the discovery of novel TTCAs for cancer immunotherapy and other clinical applications.


Assuntos
Aminoácidos , Neoplasias , Humanos , Pontuação de Propensão , Aminoácidos/química , Algoritmos , Neoplasias/terapia , Dipeptídeos/química , Dipeptídeos/metabolismo , Linfócitos T/metabolismo , Biologia Computacional/métodos
8.
EXCLI J ; 21: 1331-1351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540675

RESUMO

The emergence of New Delhi metallo-beta-lactamase-1 (NDM-1) has conferred enteric bacteria resistance to almost all beta-lactam antibiotics. Its capability of horizontal transfer through plasmids, amongst humans, animal reservoirs and the environment, has added up to the totality of antimicrobial resistance control, animal husbandry and food safety. Thus far, there have been no effective drugs for neutralizing NDM-1. This study explores the structure-activity relationship of NDM-1 inhibitors. IC50 values of NDM-1 inhibitors were compiled from both the ChEMBL database and literature. After curation, a final set of 686 inhibitors were used for machine learning model building using the random forest algorithm against 12 sets of molecular fingerprints. Benchmark results indicated that the KlekotaRothCount fingerprint provided the best overall performance with an accuracy of 0.978 and 0.778 for the training and testing set, respectively. Model interpretation revealed that nitrogen-containing features (KRFPC 4080, KRFPC 3882, KRFPC 677, KRFPC 3608, KRFPC 3750, KRFPC 4287 and KRFPC 3943), sulfur-containing substructures (KRFPC 2855 and KRFPC 4843), aromatic features (KRFPC 1566, KRFPC 1564, KRFPC 1642, KRFPC 3608, KRFPC 4287 and KRFPC 3943), carbonyl features (KRFPC 1193 and KRFPC 3025), aliphatic features (KRFPC 2975, KRFPC 297, KRFPC 3224 and KRFPC 669) are features contributing to NDM-1 inhibitory activity. It is anticipated that findings from this study would help facilitate the drug discovery of NDM-1 inhibitors by providing guidelines for further lead optimization.

9.
Sci Rep ; 12(1): 7697, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546347

RESUMO

Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.


Assuntos
Proteínas Amiloidogênicas , Diabetes Mellitus Tipo 2 , Algoritmos , Biologia Computacional/métodos , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
10.
EXCLI J ; 21: 11-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145365

RESUMO

Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no deleterious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predictors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed (i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, we explored which factors are important for building more accurate and stable predictors and this included training/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design and development of new and more effective computational approaches for the detection and characterization of PVPs.

11.
Pharmaceutics ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35057016

RESUMO

Tumor-homing peptides (THPs) are small peptides that can recognize and bind cancer cells specifically. To gain a better understanding of THPs' functional mechanisms, the accurate identification and characterization of THPs is required. Although some computational methods for in silico THP identification have been proposed, a major drawback is their lack of model interpretability. In this study, we propose a new, simple and easily interpretable computational approach (called SCMTHP) for identifying and analyzing tumor-homing activities of peptides via the use of a scoring card method (SCM). To improve the predictability and interpretability of our predictor, we generated propensity scores of 20 amino acids as THPs. Finally, informative physicochemical properties were used for providing insights on characteristics giving rise to the bioactivity of THPs via the use of SCMTHP-derived propensity scores. Benchmarking experiments from independent test indicated that SCMTHP could achieve comparable performance to state-of-the-art method with accuracies of 0.827 and 0.798, respectively, when evaluated on two benchmark datasets consisting of Main and Small datasets. Furthermore, SCMTHP was found to outperform several well-known machine learning-based classifiers (e.g., decision tree, k-nearest neighbor, multi-layer perceptron, naive Bayes and partial least squares regression) as indicated by both 10-fold cross-validation and independent tests. Finally, the SCMTHP web server was established and made freely available online. SCMTHP is expected to be a useful tool for rapid and accurate identification of THPs and for providing better understanding on THP biophysical and biochemical properties.

12.
Biomed Res Int ; 2022: 1846485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35059459

RESUMO

DNA barcodes are regarded as hereditary succession codes that serve as a recognition marker to address several queries relating to the identification, classification, community ecology, and evolution of certain functional traits in organisms. The mitochondrial cytochrome c oxidase 1 (CO1) gene as a DNA barcode is highly efficient for discriminating vertebrate and invertebrate animal species. Similarly, different specific markers are used for other organisms, including ribulose bisphosphate carboxylase (rbcL), maturase kinase (matK), transfer RNA-H and photosystem II D1-ApbsArabidopsis thaliana (trnH-psbA), and internal transcribed spacer (ITS) for plant species; 16S ribosomal RNA (16S rRNA), elongation factor Tu gene (Tuf gene), and chaperonin for bacterial strains; and nuclear ITS for fungal strains. Nevertheless, the taxon coverage of reference sequences is far from complete for genus or species-level identification. Applying the next-generation sequencing approach to the parallel acquisition of DNA barcode sequences could greatly expand the potential for library preparation or accurate identification in biodiversity research. Overall, this review articulates on the DNA barcoding technology as applied to different organisms, its universality, applicability, and innovative approach to handling DNA-based species identification.


Assuntos
Arabidopsis/genética , Bactérias , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , DNA Fúngico/genética , DNA de Plantas/genética , Fungos , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética
13.
Mol Divers ; 26(1): 467-487, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34609711

RESUMO

Alzheimer's disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure-activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model's interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/ .


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Humanos , Relação Estrutura-Atividade
14.
Curr Med Chem ; 29(5): 849-864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34375178

RESUMO

Cancer is one of the leading causes of death worldwide and the underlying angiogenesis represents one of the hallmarks of cancer. Efforts are already under way for the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route, which tackle the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represent an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.


Assuntos
Proteínas Angiogênicas , Neoplasias , Algoritmos , Humanos , Aprendizado de Máquina , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico
15.
Ann Anat ; 239: 151803, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34265384

RESUMO

INTRODUCTION: Thyroid ima artery is a variant artery found on the anterior surface of the trachea. The aim of this meta-analysis was to obtain pooled prevalence data of the thyroid ima artery and discuss its clinical importance especially for tracheostomy. METHODS: A systematic literature search was performed through five electronic databases until May 2021. A set of inclusion and exclusion criteria based on AQUA guidelines were used to select relevant studies. Meta-analysis, subgroup analyses, meta-regression, and tests for publication bias were performed. Factors that influence the prevalence of the thyroid ima artery were detected using simple and interpretable machine learning (linear regression and K means). RESULTS: Thirty-six studies with a total of 4335 subjects met the inclusion criteria. The prevalence of the thyroid ima artery was 3.8% (95% CI: 0.027-0.049, I2=56.2%). Machine learning identified age, region and year of publication as potential covariates. Subgroup analysis showed that the prevalence of the thyroid ima artery was 4.5 times higher in fetuses (14.8%) than adults (3.3%) (z=-6.76, p<0.01). There was a significant negative correlation between the adult prevalence of the thyroid ima artery and the year of publication (Pearson's r=-0.354, p=0.040) thereby suggesting a decline in thyroid ima artery prevalence over time. This artery, if present, may originate from the brachiocephalic trunk (74%), right common carotid artery (9.6%), arch of aorta (7.7%), right internal thoracic artery (4.8%), left common carotid artery (1.9%) and left internal thoracic artery (1.9%). CONCLUSION: In addition to evidence-based synthesis of the thyroid ima artery, this study is the first ever study to report the decreasing prevalence over time of a human body structure in the postnatal life. Knowledge of the thyroid ima artery is of vital importance for surgeons to avoid accidental hemorrhage during tracheostomy.


Assuntos
Tronco Braquiocefálico , Glândula Tireoide , Adulto , Artéria Carótida Primitiva , Humanos , Aprendizado de Máquina , Prevalência
16.
Methods ; 204: 189-198, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34883239

RESUMO

The development of efficient and effective bioinformatics tools and pipelines for identifying peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activities from large-scale protein datasets is of great importance for the discovery and development of potential and promising antidiabetic drugs. In this study, we present a novel stacking-based ensemble learning predictor (termed StackDPPIV) designed for identification of DPP-IV inhibitory peptides. Unlike the existing method, which is based on single-feature-based methods, we combined five popular machine learning algorithms in conjunction with ten different feature encodings from multiple perspectives to generate a pool of various baseline models. Subsequently, the probabilistic features derived from these baseline models were systematically integrated and deemed as new feature representations. Finally, in order to improve the predictive performance, the genetic algorithm based on the self-assessment-report was utilized to determine a set of informative probabilistic features and then used the optimal one for developing the final meta-predictor (StackDPPIV). Experiment results demonstrated that StackDPPIV could outperform its constituent baseline models on both the training and independent datasets. Furthermore, StackDPPIV achieved an accuracy of 0.891, MCC of 0.784 and AUC of 0.961, which were 9.4%, 19.0% and 11.4%, respectively, higher than that of the existing method on the independent test. Feature analysis demonstrated that our feature representations had more discriminative ability as compared to conventional feature descriptors, which highlights the combination of different features was essential for the performance improvement. In order to implement the proposed predictor, we had built a user-friendly online web server at http://pmlabstack.pythonanywhere.com/StackDPPIV.


Assuntos
Dipeptidil Peptidase 4 , Peptídeos , Biologia Computacional , Dipeptidil Peptidase 4/metabolismo , Aprendizado de Máquina , Peptídeos/farmacologia , Proteínas
17.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884927

RESUMO

Umami ingredients have been identified as important factors in food seasoning and production. Traditional experimental methods for characterizing peptides exhibiting umami sensory properties (umami peptides) are time-consuming, laborious, and costly. As a result, it is preferable to develop computational tools for the large-scale identification of available sequences in order to identify novel peptides with umami sensory properties. Although a computational tool has been developed for this purpose, its predictive performance is still insufficient. In this study, we use a feature representation learning approach to create a novel machine-learning meta-predictor called UMPred-FRL for improved umami peptide identification. We combined six well-known machine learning algorithms (extremely randomized trees, k-nearest neighbor, logistic regression, partial least squares, random forest, and support vector machine) with seven different feature encodings (amino acid composition, amphiphilic pseudo-amino acid composition, dipeptide composition, composition-transition-distribution, and pseudo-amino acid composition) to develop the final meta-predictor. Extensive experimental results demonstrated that UMPred-FRL was effective and achieved more accurate performance on the benchmark dataset compared to its baseline models, and consistently outperformed the existing method on the independent test dataset. Finally, to aid in the high-throughput identification of umami peptides, the UMPred-FRL web server was established and made freely available online. It is expected that UMPred-FRL will be a powerful tool for the cost-effective large-scale screening of candidate peptides with potential umami sensory properties.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Peptídeos/química , Algoritmos , Bases de Dados de Proteínas , Proteínas Alimentares/química , Internet , Máquina de Vetores de Suporte , Paladar
18.
Sci Rep ; 11(1): 23782, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893688

RESUMO

Owing to their ability to maintain a thermodynamically stable fold at extremely high temperatures, thermophilic proteins (TTPs) play a critical role in basic research and a variety of applications in the food industry. As a result, the development of computation models for rapidly and accurately identifying novel TTPs from a large number of uncharacterized protein sequences is desirable. In spite of existing computational models that have already been developed for characterizing thermophilic proteins, their performance and interpretability remain unsatisfactory. We present a novel sequence-based thermophilic protein predictor, termed SCMTPP, for improving model predictability and interpretability. First, an up-to-date and high-quality dataset consisting of 1853 TPPs and 3233 non-TPPs was compiled from published literature. Second, the SCMTPP predictor was created by combining the scoring card method (SCM) with estimated propensity scores of g-gap dipeptides. Benchmarking experiments revealed that SCMTPP had a cross-validation accuracy of 0.883, which was comparable to that of a support vector machine-based predictor (0.906-0.910) and 2-17% higher than that of commonly used machine learning models. Furthermore, SCMTPP outperformed the state-of-the-art approach (ThermoPred) on the independent test dataset, with accuracy and MCC of 0.865 and 0.731, respectively. Finally, the SCMTPP-derived propensity scores were used to elucidate the critical physicochemical properties for protein thermostability enhancement. In terms of interpretability and generalizability, comparative results showed that SCMTPP was effective for identifying and characterizing TPPs. We had implemented the proposed predictor as a user-friendly online web server at http://pmlabstack.pythonanywhere.com/SCMTPP in order to allow easy access to the model. SCMTPP is expected to be a powerful tool for facilitating community-wide efforts to identify TPPs on a large scale and guiding experimental characterization of TPPs.


Assuntos
Sequência de Aminoácidos , Biologia Computacional/métodos , Dipeptídeos/química , Proteínas de Choque Térmico/química , Algoritmos , Aminoácidos , Bases de Dados de Proteínas , Dipeptídeos/metabolismo , Proteínas de Choque Térmico/metabolismo , Aprendizado de Máquina , Modelos Moleculares , Pontuação de Propensão , Conformação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
19.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770786

RESUMO

Betulinic acid (BA) is a pentacyclic triterpene usually isolated from botanical sources. Numerous studies have reported the inhibitory effect of BA against human colorectal cancer cells (CRC). However, its effect on the expression of the molecular chaperone HSPA is unclear. The aim of this research is to investigate the anti-cancer activities of BA purified from Piper retrofractum and study its effect on the expression of HSPA in colorectal cancer HCT116 and SW480 cells. The viability of both cancer cells was reduced after they were treated with an increasing dosage of BA. Flow cytometry assay revealed that levels of cell apoptosis significantly increased after incubation with BA in both cancer cells. Pro-apoptotic markers including Bax, cleaved-caspase-3 and cleaved-caspase-9 were increased while anti-apoptotic marker Bcl-2 was decreased after BA treatment. Western blot also showed that the expression of HSPA fluctuated upon BA treatment, whereby HSPA was increased at lower BA concentrations while at higher BA concentrations HSPA expression was decreased. Preliminary molecular docking assay showed that BA can bind to the nucleotide binding domain of the HSP70 at its ADP-bound state of the HSP70. Although further research is needed to comprehend the BA-HSPA interaction, our findings indicate that BA can be considered as potential candidate for the development of new treatment for colorectal cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Triterpenos Pentacíclicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais , Relação Dose-Resposta a Droga , Citometria de Fluxo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triterpenos Pentacíclicos/química , Relação Estrutura-Atividade , Ácido Betulínico
20.
Medicina (Kaunas) ; 57(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34833500

RESUMO

Background and Objectives: The landmark for neurosurgical approaches to access brain lesion is the pterion. The aim of the present study is to classify and examine the prevalence of all types of pterion variations and perform morphometric measurements from previously defined anthropological landmarks. Materials and methods: One-hundred and twenty-four Thai dried skulls were investigated. Classification and morphometric measurement of the pterion was performed. Machine learning models were also used to interpret the morphometric findings with respect to sex and age estimation. Results: Spheno-parietal type was the most common type (62.1%), followed by epipteric (11.7%), fronto-temporal (5.2%) and stellate (1.2%). Complete synostosis of the pterion suture was present in 18.5% and was only present in males. While most morphometric measurements were similar between males and females, the distances from the pterion center to the mastoid process and to the external occipital protuberance were longer in males. Random forest algorithm could predict sex with 80.7% accuracy (root mean square error = 0.38) when the pterion morphometric data were provided. Correlational analysis indicated that the distances from the pterion center to the anterior aspect of the frontozygomatic suture and to the zygomatic angle were positively correlated with age, which may serve as basis for age estimation in the future. Conclusions: Further studies are needed to explore the use of machine learning in anatomical studies and morphometry-based sex and age estimation. Thorough understanding of the anatomy of the pterion is clinically useful when planning pterional craniotomy, particularly when the position of the pterion may change with age.


Assuntos
Suturas Cranianas , Crânio , Craniotomia , Feminino , Humanos , Masculino , Procedimentos Neurocirúrgicos , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...