Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
PLoS One ; 13(1): e0190279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293576

RESUMO

BACKGROUND: Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. RESULTS: The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. CONCLUSIONS: pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.


Assuntos
Alinhamento de Sequência/métodos , Algoritmos , Biologia Computacional , Computadores , Linguagens de Programação , Software
3.
PLoS One ; 12(8): e0182097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797052

RESUMO

Understanding of phenotypes and their genetic basis is a major focus in current plant biology. Large amounts of phenotype data are being generated, both for macroscopic phenotypes such as size or yield, and for molecular phenotypes such as expression levels and metabolite levels. More insight in the underlying genetic and molecular mechanisms that influence phenotypes will enable a better understanding of how various phenotypes are related to each other. This will be a major step forward in understanding plant biology, with immediate value for plant breeding and academic plant research. Currently the genetic basis of most phenotypes remains however to be discovered, and the relatedness of different traits is unclear. We here present a novel approach to connect phenotypes to underlying biological processes and molecular functions. These connections define similarities between different types of phenotypes. The approach starts by using Quantitative Trait Locus (QTL) data, which are abundantly available for many phenotypes of interest. Overrepresentation analysis of gene functions based on Gene Ontology term enrichment across multiple QTL regions for a given phenotype, be it macroscopic or molecular, results in a small set of biological processes and molecular functions for each phenotype. Subsequently, similarity between different phenotypes can be defined in terms of these gene functions. Using publicly available rice data as example, a close relationship with defined molecular phenotypes is demonstrated for many macroscopic phenotypes. This includes for example a link between 'leaf senescence' and 'aspartic acid', as well as between 'days to maturity' and 'choline'. Relationships between macroscopic and molecular phenotypes may result in more efficient marker-assisted breeding and are likely to direct future research aimed at a better understanding of plant phenotypes.


Assuntos
Genes de Plantas , Oryza/genética , Fenótipo , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Oryza/crescimento & desenvolvimento
4.
Plant Biotechnol J ; 14(2): 581-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25974127

RESUMO

Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , Genes de Plantas , Plântula/enzimologia , Plântula/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/anatomia & histologia , Frutas/anatomia & histologia , Solanum lycopersicum/anatomia & histologia , Fases de Leitura Aberta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética
5.
J Exp Bot ; 66(18): 5417-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26044092

RESUMO

Recent methodological developments in plant phenotyping, as well as the growing importance of its applications in plant science and breeding, are resulting in a fast accumulation of multidimensional data. There is great potential for expediting both discovery and application if these data are made publicly available for analysis. However, collection and storage of phenotypic observations is not yet sufficiently governed by standards that would ensure interoperability among data providers and precisely link specific phenotypes and associated genomic sequence information. This lack of standards is mainly a result of a large variability of phenotyping protocols, the multitude of phenotypic traits that are measured, and the dependence of these traits on the environment. This paper discusses the current situation of standardization in the area of phenomics, points out the problems and shortages, and presents the areas that would benefit from improvement in this field. In addition, the foundations of the work that could revise the situation are proposed, and practical solutions developed by the authors are introduced.


Assuntos
Produtos Agrícolas/genética , Genoma de Planta , Genômica/métodos , Fenótipo , Estatística como Assunto/métodos
6.
PLoS One ; 10(4): e0122524, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830241

RESUMO

MOTIVATION: To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. RESULTS: With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.


Assuntos
Alinhamento de Sequência , Análise de Sequência de DNA , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulinas/genética , Polimorfismo de Nucleotídeo Único , Software
7.
Physiol Plant ; 153(2): 318-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24839909

RESUMO

In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Genes de Plantas , Germinação/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Fenótipo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/efeitos dos fármacos , Sementes/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Temperatura , Fatores de Transcrição/metabolismo
8.
BMC Plant Biol ; 14: 330, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25492368

RESUMO

BACKGROUND: Elucidation of genotype-to-phenotype relationships is a major challenge in biology. In plants, it is the basis for molecular breeding. Quantitative Trait Locus (QTL) mapping enables to link variation at the trait level to variation at the genomic level. However, QTL regions typically contain tens to hundreds of genes. In order to prioritize such candidate genes, we show that we can identify potentially causal genes for a trait based on overrepresentation of biological processes (gene functions) for the candidate genes in the QTL regions of that trait. RESULTS: The prioritization method was applied to rice QTL data, using gene functions predicted on the basis of sequence- and expression-information. The average reduction of the number of genes was over ten-fold. Comparison with various types of experimental datasets (including QTL fine-mapping and Genome Wide Association Study results) indicated both statistical significance and biological relevance of the obtained connections between genes and traits. A detailed analysis of flowering time QTLs illustrates that genes with completely unknown function are likely to play a role in this important trait. CONCLUSIONS: Our approach can guide further experimentation and validation of causal genes for quantitative traits. This way it capitalizes on QTL data to uncover how individual genes influence trait variation.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Marcadores Genéticos , Oryza/anatomia & histologia , Fenótipo
9.
BMC Plant Biol ; 14: 76, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666886

RESUMO

BACKGROUND: Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions. RESULTS: Already modest (2-fold) over-expression of the AtCHR23 ATPase gene in Arabidopsis results in overall reduced growth compared to the wild-type. Detailed analyses show that in the root, the reduction of growth is due to reduced cell elongation. The reduced-growth phenotype requires sufficient light and is magnified by applying deliberate abiotic (salt, osmotic) stress. In contrast, the knockout mutation of AtCHR23 does not lead to such visible phenotypic effects. In addition, we show that over-expression of AtCHR23 increases the variability of growth in populations of genetically identical plants. These data indicate that accurate and controlled expression of AtCHR23 contributes to the stability or robustness of growth. Detailed RNAseq analyses demonstrate that upon AtCHR23 over-expression also the variation of gene expression is increased in a subset of genes that associate with environmental stress. The larger variation of gene expression is confirmed in individual plants with the help of independent qRT-PCR analysis. CONCLUSIONS: Over-expression of AtCHR23 gives Arabidopsis a phenotype that is markedly different from the growth arrest phenotype observed upon over-expression of AtCHR12, the paralog of AtCHR23, in response to abiotic stress. This demonstrates functional sub-specialization of highly similar ATPases in Arabidopsis. Over-expression of AtCHR23 increases the variability of growth among genetically identical individuals in a way that is consistent with increased variability of expression of a distinct subset of genes that associate with environmental stress. We propose that ATCHR23-mediated chromatin remodeling is a potential component of a buffer system in plants that protects against environmentally-induced phenotypic and transcriptional variation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica de Plantas , Adenosina Trifosfatases/genética , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Hipocótilo/anatomia & histologia , Hipocótilo/efeitos da radiação , Luz , Mutação/genética , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
10.
BMC Res Notes ; 7: 34, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24418292

RESUMO

BACKGROUND: Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. RESULTS: Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. CONCLUSION: The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.


Assuntos
Sequência de Bases , Biologia Computacional/métodos , Entropia , MicroRNAs/genética , Herpesvirus Humano 4/genética , Sequências Repetidas Invertidas , MicroRNAs/química , Dados de Sequência Molecular , Distribuição Normal , Conformação de Ácido Nucleico
11.
PLoS One ; 8(11): e81147, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312269

RESUMO

As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.


Assuntos
Adenosina Trifosfatases/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma de Planta/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , RNA Polimerases Dirigidas por DNA/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/fisiologia , Filogenia , Estresse Fisiológico/genética
12.
BMC Genomics ; 14: 356, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23713999

RESUMO

BACKGROUND: Solanum dulcamara (bittersweet, climbing nightshade) is one of the few species of the Solanaceae family native to Europe. As a common weed it is adapted to a wide range of ecological niches and it has long been recognized as one of the alternative hosts for pathogens and pests responsible for many important diseases in potato, such as Phytophthora. At the same time, it may represent an alternative source of resistance genes against these diseases. Despite its unique ecology and potential as a genetic resource, genomic research tools are lacking for S. dulcamara. We have taken advantage of next-generation sequencing to speed up research on and use of this non-model species. RESULTS: In this work, we present the first large-scale characterization of the S. dulcamara transcriptome. Through comparison of RNAseq reads from two different accessions, we were able to predict transcript-based SNP and SSR markers. Using the SNP markers in combination with genomic AFLP and CAPS markers, the first genome-wide genetic linkage map of bittersweet was generated. Based on gene orthology, the markers were anchored to the genome of related Solanum species (tomato, potato and eggplant), revealing both conserved and novel chromosomal rearrangements. This allowed a better estimation of the evolutionary moment of rearrangements in a number of cases and showed that chromosomal breakpoints are regularly re-used. CONCLUSION: Knowledge and tools developed as part of this study pave the way for future genomic research and exploitation of this wild Solanum species. The transcriptome assembly represents a resource for functional analysis of genes underlying interesting biological and agronomical traits and, in the absence of the full genome, provides a reference for RNAseq gene expression profiling aimed at understanding the unique biology of S. dulcamara. Cross-species orthology-based marker selection is shown to be a powerful tool to quickly generate a comparative genetic map, which may speed up gene mapping and contribute to the understanding of genome evolution within the Solanaceae family.


Assuntos
Genômica , Solanum/genética , Cromossomos de Plantas/genética , Análise por Conglomerados , Evolução Molecular , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie
13.
Transgenic Res ; 22(4): 869-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23430589

RESUMO

Common cloning is often associated with instability of certain classes of DNA. Here we report on IS1 transposition as possible source of such instability. During the cloning of Arabidopsis thaliana gene into commercially available vector maintained in widely used Escherichia coli host the insertion of complete IS1 element into the intron of cloned gene was found. The transposition of the IS1 element was remarkably rapid and is likely to be sequence-specific. The use of E. coli strains that lower the copy number of vector or avoiding the presence of the problematic sequence is a solution to the inadvertent transposition of IS1. The transposition of IS1 is rare but it can occur and might confound functional studies of a plant gene.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Transposases/genética , Montagem e Desmontagem da Cromatina/genética , Clonagem Molecular , DNA Bacteriano , Íntrons/genética
14.
BMC Genomics ; 10: 204, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19405940

RESUMO

BACKGROUND: MicroRNAs (miRNAs), short approximately 21-nucleotide RNA molecules, play an important role in post-transcriptional regulation of gene expression. The number of known miRNA hairpins registered in the miRBase database is rapidly increasing, but recent reports suggest that many miRNAs with restricted temporal or tissue-specific expression remain undiscovered. Various strategies for in silico miRNA identification have been proposed to facilitate miRNA discovery. Notably support vector machine (SVM) methods have recently gained popularity. However, a drawback of these methods is that they do not provide insight into the biological properties of miRNA sequences. RESULTS: We here propose a new strategy for miRNA hairpin prediction in which the likelihood that a genomic hairpin is a true miRNA hairpin is evaluated based on statistical distributions of observed biological variation of properties (descriptors) of known miRNA hairpins. These distributions are transformed into a single and continuous outcome classifier called the L score. Using a dataset of known miRNA hairpins from the miRBase database and an exhaustive set of genomic hairpins identified in the genome of Caenorhabditis elegans, a subset of 18 most informative descriptors was selected after detailed analysis of correlation among and discriminative power of individual descriptors. We show that the majority of previously identified miRNA hairpins have high L scores, that the method outperforms miRNA prediction by threshold filtering and that it is more transparent than SVM classifiers. CONCLUSION: The L score is applicable as a prediction classifier with high sensitivity for novel miRNA hairpins. The L-score approach can be used to rank and select interesting miRNA hairpin candidates for downstream experimental analysis when coupled to a genome-wide set of in silico-identified hairpins or to facilitate the analysis of large sets of putative miRNA hairpin loci obtained in deep-sequencing efforts of small RNAs. Moreover, the in-depth analyses of miRNA hairpins descriptors preceding and determining the L score outcome could be used as an extension to miRBase entries to help increase the reliability and biological relevance of the miRNA registry.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , Conformação de Ácido Nucleico , Análise de Sequência de RNA/métodos , Animais , Caenorhabditis elegans/genética , Genoma Helmíntico , Funções Verossimilhança , Modelos Genéticos , Sensibilidade e Especificidade
15.
PLoS One ; 2(7): e622, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17637838

RESUMO

Many investigations have reported the successful mapping of quantitative trait loci (QTLs) for gene expression phenotypes (eQTLs). Local eQTLs, where expression phenotypes map to the genes themselves, are of especially great interest, because they are direct candidates for previously mapped physiological QTLs. Here we show that many mapped local eQTLs in genetical genomics experiments do not reflect actual expression differences caused by sequence polymorphisms in cis-acting factors changing mRNA levels. Instead they indicate hybridization differences caused by sequence polymorphisms in the mRNA region that is targeted by the microarray probes. Many such polymorphisms can be detected by a sensitive and novel statistical approach that takes the individual probe signals into account. Applying this approach to recent mouse and human eQTL data, we demonstrate that indeed many local eQTLs are falsely reported as "cis-acting" or "cis" and can be successfully detected and eliminated with this approach.


Assuntos
Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , Análise de Variância , Animais , Sequência de Bases , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Genômica/métodos , Genômica/tendências , Humanos , Linfócitos/fisiologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reprodutibilidade dos Testes
16.
Plant J ; 51(5): 874-85, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17605754

RESUMO

One of the earliest responses of plants to environmental stress is establishing a temporary growth arrest that allows adaptation to adverse conditions. The response to abiotic stress requires the modulation of gene expression, which may be mediated by the alteration of chromatin structures. This alteration can be accomplished with the help of chromatin-remodeling enzymes, such as the various SWI/SNF classes of ATPases. Here, we investigate the role of the Arabidopsis SNF2/Brahma-type AtCHR12 chromatin-remodeling gene in plant growth and development in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene plays a vital role in mediating the temporary growth arrest of Arabidopsis that is induced upon perception of stress. Exposing an AtCHR12 overexpressing mutant to stress conditions leads to growth arrest of normally active primary buds, as well as to reduced growth of the primary stem. In contrast, the AtCHR12 knockout mutant shows less growth arrest than the wild-type when exposed to moderate stress. Without stress, mutant plants are indistinguishable from the wild-type, and the growth arrest response seems to depend on the severity of the stress applied. Modulation of AtCHR12 expression correlates with changes in expression of dormancy-associated genes. This is in agreement with the concept of AtCHR12 participation in priming the plants for the growth arrest response. Our data indicate that AtCHR12-associated growth arrest differs from DELLA-mediated growth restraint. This establishes AtCHR12 as a novel gene involved in the response repertoire of plants that permits flexible modulation of growth in adverse and/or otherwise limiting environments.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Montagem e Desmontagem da Cromatina/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Expressão Gênica , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
17.
Plant Mol Biol ; 65(1-2): 205-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17641976

RESUMO

Chromosomal coexpression domains are found in a number of different genomes under various developmental conditions. The size of these domains and the number of genes they contain vary. Here, we define local coexpression domains as adjacent genes where all possible pair-wise correlations of expression data are higher than 0.7. In rice, such local coexpression domains range from predominantly two genes, up to 4, and make up approximately 5% of the genomic neighboring genes, when examining different expression platforms from the public domain. The genes in local coexpression domains do not fall in the same ontology category significantly more than neighboring genes that are not coexpressed. Duplication, orientation or the distance between the genes does not solely explain coexpression. The regulation of coexpression is therefore thought to be regulated at the level of chromatin structure. The characteristics of the local coexpression domains in rice are strikingly similar to such domains in the Arabidopsis genome. Yet, no microsynteny between local coexpression domains in Arabidopsis and rice could be identified. Although the rice genome is not yet as extensively annotated as the Arabidopsis genome, the lack of conservation of local coexpression domains may indicate that such domains have not played a major role in the evolution of genome structure or in genome conservation.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Oryza/genética , Sintenia/genética
18.
BMC Bioinformatics ; 8: 132, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17448222

RESUMO

BACKGROUND: The Affymetrix GeneChip technology uses multiple probes per gene to measure its expression level. Individual probe signals can vary widely, which hampers proper interpretation. This variation can be caused by probes that do not properly match their target gene or that match multiple genes. To determine the accuracy of Affymetrix arrays, we developed an extensive verification protocol, for mouse arrays incorporating the NCBI RefSeq, NCBI UniGene Unique, NIA Mouse Gene Index, and UCSC mouse genome databases. RESULTS: Applying this protocol to Affymetrix Mouse Genome arrays (the earlier U74Av2 and the newer 430 2.0 array), the number of sequence-verified probes with perfect matches was no less than 85% and 95%, respectively; and for 74% and 85% of the probe sets all probes were sequence verified. The latter percentages increased to 80% and 94% after discarding one or two unverifiable probes per probe set, and even further to 84% and 97% when, in addition, allowing for one or two mismatches between probe and target gene. Similar results were obtained for other mouse arrays, as well as for human and rat arrays. Based on these data, refined chip definition files for all arrays are provided online. Researchers can choose the version appropriate for their study to (re)analyze expression data. CONCLUSION: The accuracy of Affymetrix probe sequences is higher than previously reported, particularly on newer arrays. Yet, refined probe set definitions have clear effects on the detection of differentially expressed genes. We demonstrate that the interpretation of the results of Affymetrix arrays is improved when the new chip definition files are used.


Assuntos
Mapeamento Cromossômico/instrumentação , Sondas de DNA/genética , Bases de Dados Genéticas , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Mapeamento Cromossômico/métodos , Humanos , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Genes Chromosomes Cancer ; 46(2): 107-17, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17117414

RESUMO

Human synovial sarcomas are aggressive soft tissue tumors with relatively high rates of recurrences and metastases. They display a variable response to common treatment protocols such as radiation and chemotherapy. For the development of novel diagnostic, prognostic, and therapeutic approaches, detailed information on the molecular mechanisms underlying the development of these tumors is of imperative importance. Fusion of the SS18 and (one of the) SSX genes is a molecular hallmark of human synovial sarcomas. The SS18 and SSX genes encode nuclear proteins that exhibit opposite transcription regulatory activities, likely through epigenetic mechanisms. The SS18 protein functions as a transcriptional coactivator and interacts directly with members of the epigenetic chromatin remodeling and modification machineries. In contrast, the SSX proteins function as transcriptional corepressors and are associated with several Polycomb group proteins. Since the domains involved in these apparently opposite transcription regulatory activities are retained in the SS18-SSX fusion proteins, we hypothesize that these fusion proteins function as "activator-repressors" of transcription. The implications of this model for human synovial sarcoma development and future treatment are discussed.


Assuntos
Epigênese Genética/fisiologia , Sarcoma Sinovial/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Translocação Genética
20.
Plant Biotechnol J ; 4(4): 445-52, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17177809

RESUMO

A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either the selectable marker gene or of all introduced transgenes during microsporogenesis. This way, transgene removal becomes an integral part of the biology of pollen maturation, not requiring any external stimulus such as chemical induction by spraying. We here show the feasibility of engineering transgenic plants to produce pollen devoid of any transgene. Highly efficient excision of transgenes from tobacco pollen was achieved with a potential failure rate of at most two out of 16,800 seeds (0.024%). No evidence for either premature activation or absence of activation of the recombinase system was observed under stress conditions in the laboratory. This approach can prevent adventitious presence of transgenes in non-GM crops or related wild species by gene flow. Such biological containment may help the deployment and management of coexistence practices to support consumer choice and will promote clean molecular farming for the production of high-value compounds in plants.


Assuntos
Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Pólen/genética , Recombinação Genética , Transgenes , Alelos , Arabidopsis/genética , Fluxo Gênico , Engenharia Genética/métodos , Marcadores Genéticos , Integrases/genética , Plasmídeos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...